摘要:
Provided is a production apparatus (100) for continuously producing aligned carbon nanotube aggregates on a substrate supporting a catalyst while continuously transferring the substrate. The production apparatus (100) includes gas mixing prevention means (12, 13) for preventing gas present outside a growth furnace (3a) from flowing into the growth furnace (3a). The gas mixing prevention means (12, 13) includes a seal gas ejection section (12b, 13b) so that the seal gas does not flow into the growth furnace through the openings of the growth furnace. The production apparatus prevents the outside air from flowing into the production apparatus, uniformly controls, within a range suitable to production of CNTs, a concentration distribution(s) and a flow rate distribution(s) of a raw material gas and/or a catalyst activation material on the substrate, and does not disturb gas flow as much as possible in the growth furnace.
摘要:
This invention provides an aligned single-layer carbon nanotube bulk structure, which comprises an assembly of a plurality of aligned single-layer carbon nanotube and has a height of not less than 10 μm, and an aligned single-layer carbon nanotube bulk structure which comprises an assembly of a plurality of aligned single-layer carbon nanotubes and has been patterned in a predetermined form. This structure is produced by chemical vapor deposition (CVD) of carbon nanotubes in the presence of a metal catalyst in a reaction atmosphere with an oxidizing agent, preferably water, added thereto. An aligned single-layer carbon nanotube bulk structure, which has realized high purify and significantly large scaled length or height, its production process and apparatus, and its applied products are provided.
摘要:
An aligned carbon nanotube bulk structure having portions different in density of the invention is characterized by being composed of carbon nanotubes aligned in a predetermined direction and having both a high-density portion of 0.2 to 1.5 g/cm3 and a low-density portion of 0.001 to 0.2 g/cm3. The carbon nanotube bulk structure can be produced by a process of growing carbon nanotubes by chemical vapor deposition (CVD) in the presence of a metal catalyst which comprises growing carbon nanotubes in an aligned state in a reaction atmosphere, soaking the obtained carbon nanotubes with a liquid, and then drying the resulting nanotubes. The invention provides aligned carbon nanotube bulk structure controlled in various properties such as density and hardness in sites thereof, and a process for the production of the same; and application thereof.
摘要翻译:具有本发明密度不同部分的排列碳纳米管体结构的特征在于,由规定方向排列的碳纳米管构成,高密度部分为0.2〜1.5g / cm 3,低密度部分为0.001 至0.2g / cm 3。 碳纳米管块结构可以通过在金属催化剂的存在下通过化学气相沉积(CVD)生长碳纳米管的方法来生产,该金属催化剂包括在反应气氛中以对准状态生长碳纳米管,将得到的碳纳米管与 液体,然后干燥所得的纳米管。 本发明提供了控制各种性质(例如其位置的密度和硬度)的对准的碳纳米管块结构及其制备方法。 及其应用。
摘要:
A transparent conductive film wherein carbon nanotubes are discursively embedded in the surface portion of a resin film is produced by (A) dispersing carbon nanotubes on a substrate surface, (B) forming a transparent resin film over the substrate on which the carbon nanotubes are dispersed, and then (C) separating the thus-formed resin film. This is a novel technique for realizing a highly transparent conductive film which is flexible and highly conductive even when amount of carbon nanotubes used therefor is small.
摘要:
The present invention relates to a nanocapsule-type structure having an average particle diameter of 1 to 50 nm, said nanocapsule-type structure comprising an aqueous solution of a metal compound encapsulated in the inside thereof. Preferably, the nanocapsule-type structure is such that the nanocapsule structure is formed by self-organization of a surfactant in an organic solvent. This nanocapsule structure is in a nanometer size, and high in dispersibility even in a high-concentration region in an organic solvent, and does not undergo aggregation, and it is useful as a catalyst for a CVD method.
摘要:
Carbon nanotubes are produced by successively repositioning an axially extending rod-like carbonaceous anode relative to a cathode surface such that a tip end surface of the anode successively faces on different portions of the cathode surface while impressing a direct current voltage therebetween, so that an arc discharge occur with the simultaneous formation of carbonaceous deposits containing carbon nanotubes on each of the portions of the cathode surface. The carbonaceous deposits are scraped and collected. A device for carrying out the above method includes a driving member for displacing the cathode surface relative to the anode.
摘要:
A fine carbon fiber having an outer diameter of about 1 to about 80 nm and an aspect ratio of 10 to 30,000, comprising a hollow center portion and a multi-layer sheath structure of a plurality of carbon layers, the layers forming annual rings, wherein the sheath-forming carbon layers form an incomplete sheath, i.e., the carbon layers are partially broken or disrupted in a longitudinal direction, and the outer diameter of the carbon fiber and/or the diameter of the hollow center portion are not uniform in a longitudinal direction. The carbon fiber is obtained by instantaneously reacting a carrier gas at a high temperature and an organic compound gas kept at a temperature below the decomposition temperature of the transition metal compound and has a conductivity equivalent to that of a conventional vapor phase method and is useful as a filler material in resins, rubbers, paints and the like.
摘要:
It relates to high purity single-walled carbon nanotubes having controlled diameter, useful as industrial materials, including high-strength carbon wire rods, particularly uniform single-walled carbon nanotubes having diameter fallen in a range of from 1.0 to 2.0 nm, and a method for producing the same efficiently, in large amount and inexpensively. The single-walled carbon nanotube obtained is characterized in that its diameter is fallen in a range of from 1.0 to 2.0 nm, and an intensity ratio IG/ID between G-band and D-band in a Raman spectrum is 200 or more. Furthermore, those single-walled carbon nanotubes are synthesized by a gas-phase flow CVD method that uses a saturated aliphatic hydrocarbon which is liquid at ordinary temperature as a first carbon source and an unsaturated aliphatic hydrocarbon which is gas at ordinary temperature as a second carbon source.
摘要:
A fine carbon fiber having an outer diameter of about 1 to about 80 nm and an aspect ratio of 10 to 30,000, comprising a hollow center portion and a multi-layer sheath structure of a plurality of carbon layers, the layers forming annual rings, wherein the sheath-forming carbon layers form an incomplete sheath, i.e., the carbon layers are partially broken or disrupted in a longitudinal direction, and the outer diameter of the carbon fiber and/or the diameter of the hollow center portion are not uniform in a longitudinal direction. The carbon fiber is obtained by instantaneously reacting a carrier gas at a high temperature and an organic compound gas kept at a temperature below the decomposition temperature of the transition metal compound and has a conductivity equivalent to that of a conventional vapor phase method and is useful as a filler material in resins, rubbers, paints and the like.
摘要:
A process for the isolation of carbon nanotubes from a mixture containing carbon nanotubes and graphite is disclosed, which includes the steps of: (a) reacting the mixture with a metal compound to intercalate the metal compound into the graphite; (b) reducing the reaction mixture obtained in step (a) to convert the intercalated metal compound to elemental metal; (c) heating the reduction mixture obtained in step (b) at a temperature of 450-600.degree. C. in an oxygen-containing atmosphere to selectively oxidize the graphite and the elemental metal; and (d) contacting the heated mixture obtained in step (c) with a liquid to dissolve the oxidized metal in the liquid and to separate the carbon nanotubes as a solid phase from the oxidized metal.