Abstract:
A method for operating a fuel cell system having a fuel cell equipped with an anode and a cathode includes the steps of generating electric power by allowing hydrogen gas supplied to the anode and oxygen gas supplied to the cathode to react electrochemically with each other, recovering water from water vapor discharged from at least one of the anode and cathode, storing recovered water in a water storing portion equipped with a tank having a closable drain opening, through which opening water stored in the tank is dischargeable to outside the fuel cell system, supplying water stored in the tank to a water utilizing means by a water supply portion, and making a decision whether or not to discharge the stored water to outside the fuel cell system through the drain opening in view of an increase in an amount of undesirable germs contained in water stored in the water storing portion.
Abstract:
A hydrogen generation device or a fuel cell system of the present invention can prevent deterioration or breakage of portions of the hydrogen generation device, which is caused by thermal stress attributable to repeated operation and halt. Thus, it is possible to increase the life and enhance the stability of the device and the system.A hydrogen generation device 76 of a fuel cell system 100 includes a hydrogen generation device main body 78 including a combustor 4 provided therein for combusting a predetermined medium capable of generating hydrogen and a plurality of pipes which are connected to the hydrogen generation device main body 78 for allowing the predetermined medium flow into or out of the hydrogen generation device main body 78. A temperature gradient is formed in the hydrogen generation device main body 78 by operation of the combustor 4, whereby a high temperature portion and a low temperature portion are formed in the hydrogen generation device main body 78. All of the plurality of pipes are arranged in the low temperature portion. A support 70 supports the hydrogen generation device main body 78 from an outside of the low temperature portion.
Abstract:
A hydrogen generator comprises a reformer configured to generate a hydrogen-containing gas through a reforming reaction in an internal space thereof using a material gas and steam; a material gas supply passage through which the material gas is supplied to the reformer; a material gas supplier which is provided at the material gas supply passage to supply the material gas to the reformer; a first valve configured to open and close the material gas supply passage; an evaporator configured to generate a steam supplied to the reformer; a water supplier configured to supply water to the evaporator; a communicating passage for allowing the reformer to communicate with atmosphere; a second valve configured to open and close the communicating passage; and a controller configured to stop the material gas supplier and the water supplier and close the first valve and the second valve at shutdown of the hydrogen generator; and open the second valve prior to opening the first valve when the material gas supplier resumes supply of the material gas to the reformer after the shutdown.
Abstract:
A hydrogen purifying apparatus and method are provided for oxidizing and removing carbon monoxide (CO) in a modified gas containing CO in addition to a main component hydrogen gas. The apparatus and method use comprises a catalyst reaction segment having a catalyst layer for oxidizing CO, a material gas supplying segment for supplying the modified gas to the reaction segment via a material gas supply pathway, and an oxidant gas supplying segment for supplying an oxidant gas on the path of the material gas supply pathway. Preferably, the apparatus further comprises means for cooling the catalyst layer at the upstream side and means for heating the catalyst layer at the downstream side.
Abstract:
A fuel cell system of the present invention comprises a reformer (1) configured to generate a hydrogen-rich gas, a shift converter (2) configured to generate hydrogen and carbon dioxide from carbon monoxide in the hydrogen-rich gas and water, a hydrogen generator (20) including a carbon monoxide removing portion (3) configured to reduce the carbon monoxide in the hydrogen-rich gas which has not been removed in said shift converter (2), a fuel cell (4) configured to generate power using the hydrogen-rich gas supplied from the hydrogen generator (20) and an oxidizing gas, an air supply portion (6, 9) configured to supply air to at least one of a position upstream of said reformer (1) and a position between said carbon monoxide removing portion (3) and said fuel cell (4) in a flow of the fuel gas; and an impurity removing means (12, 13) configured to remove an impurity gas from the air.
Abstract:
A hydrogen generating apparatus or the like is able to detect an excess water state or an excess steam state in the interior of a shift converter or a selective oxidation device. The hydrogen generating apparatus (120) comprise a hydrogen generator (118) including a reformer (100) configured to generate a reformed gas from a material and steam; a shift converter (103) configured to cause the reformed gas supplied from the reformer (100) to be subjected to a shift reaction; and a selective oxidation device (105) configured to decrease a concentration of carbon monoxide in the reformed gas after the shift reaction to a predetermined concentration or less; a temperature sensor (116, 117) configured to detect one of a temperature of the shift converter (103) and a temperature of the selective oxidation device (105); and a controller (205) configured to determine that excess water or excess steam exists in an interior of the hydrogen generator (118) when an increasing rate of the temperature detected by the temperature sensor is less than a predetermined threshold.
Abstract:
A hydrogen generation system comprises a reformer 1 that contains a reforming catalyst, an evaporator 4 that supplies steam to the reformer 1, a heater 3 that heats the reformer 1 and the evaporator 4, a material feed portion 5 that feeds a feed material containing hydrocarbon compound to the reformer 1 through the evaporator 4, and a water supply portion 6 that has a flow rate switch 6a and supplies water to the reformer 1 and the evaporator 4.
Abstract:
The present invention is a method for recovering a catalyst from a catalyst body comprising a carrier having a catalyst layer formed on at least a part of the surface thereof, which comprises (a) a step of forming an overcoat layer on the surface of the catalyst layer, and (b) a step of allowing the catalyst body having the overcoat layer formed thereon to stand under the condition to result in a difference in expansibility or contractility exhibited by the overcoat layer from that exhibited by the carrier, wherein exfoliation of the catalyst layer from the carrier is permitted by means of the resulting difference in expansibility or contractility under the condition.
Abstract:
The present invention provides a fuel cell system comprising a hydrogen generator (1) which generates hydrogen gas by allowing a source material to undergo a reforming reaction and a fuel cell (3) which is equipped with a anode and an cathode and which generates electric power by allowing the hydrogen gas supplied to the anode and oxygen gas supplied to the cathode to react electrochemically with each other. The fuel cell system further comprises a water recovering portion (5) configured to recover water from water vapor discharged from at least one of the fuel and cathodes, a water storing portion (6) which is equipped with a tank (6a) for storing water recovered by the water recovering portion (5), and a water supply portion (10) configured to supply water stored in the tank (6a) to the hydrogen generator (1), wherein the tank (6a) is configured, in order to prevent water stored in the tank (6a) from decaying, such that the stored water is dischargable to the outside, and wherein the fuel cell system is so configured as to make a decision on whether or not to discharge the stored water to the outside for the prevention of water decay.
Abstract:
A fuel cell system of the present invention comprises a fuel cell (101); a first heat medium path through which a first heat medium for cooling the fuel cell (101) flows; a first flow control device (107) configured to flow the first heat medium in the first heat medium path; an abnormality detector configured to detect an abnormality; and a controller (110) configured to control the first flow control device (107) such that the fuel cell (101) after shut-down of power generation is cooled with a higher rate in an abnormal shut-down process performed after the abnormality detector detects the abnormality, than in a normal shut-down process.