摘要:
In order to improve the characteristic of the PZT film (insulation film of capacitor) of the PZT capacitor, after forming the amorphous PZT film, the amorphous PZT film is crystallized from at least the upper surface of the amorphous PZT film to form the PZT crystal film by employing the process whose sequence is reverse to that of the conventional process. In this case, the amorphous PZT film, which contains excessive oxygen and formed on the upper surface of the amorphous PZT film, is used as a seed.
摘要:
Disclosed is a method of manufacturing a semiconductor device comprising forming an element isolation trench in a semiconductor substrate, coating a polysilazane perhydride solution on the semiconductor substrate having the element isolation trench formed thereon to form a polysilazane perhydride film, the polysilazane perhydride solution comprising dibutyl ether having a butanol concentration of 30 ppm or less, and polysilazane perhydride dissolved in the dibutyl ether, subjecting the polysilazane perhydride film to oxidation in an atmosphere containing water vapor to form a silicon dioxide film, and selectively removing the silicon dioxide film to leave the silicon dioxide film in the element isolation trench to form an element isolating insulation film.
摘要:
Disclosed is a method of manufacturing a semiconductor device comprising forming an element isolation trench in a semiconductor substrate, coating a polysilazane perhydride solution on the semiconductor substrate having the element isolation trench formed thereon to form a polysilazane perhydride film, the polysilazane perhydride solution comprising dibutyl ether having a butanol concentration of 30 ppm or less, and polysilazane perhydride dissolved in the dibutyl ether, subjecting the polysilazane perhydride film to oxidation in an atmosphere containing water vapor to form a silicon dioxide film, and selectively removing the silicon dioxide film to leave the silicon dioxide film in the element isolation trench to form an element isolating insulation film.
摘要:
A semiconductor device comprises: a first semiconductor layer 6 having a first conductivity formed on a substrate having a surface of an insulating material 4; a source region 16a and a drain region 16b, which are formed on the first semiconductor layer so as to be separated from each other and which have a second conductivity different from the first conductivity; a channel region 6 formed on the first semiconductor layer between the source region and the drain region; a gate electrode 10 formed on the channel region a gate sidewall 14 of an insulating material formed on a side of the gate electrode; and a second semiconductor layer 18 having the first conductivity formed on at least the source region. This semiconductor device can effectively suppress the floating-body effect with a simple structure.
摘要:
A structure of a semiconductor device and a method of manufacturing the same is provided wherein a leakage current can be reduced while improving a drain breakdown voltage of an Insulated-Gate transistor such as a MOSFET, MOSSIT and a MISFET, and a holding characteristic of a memory cell such as a DRAM using these transistors as switching transistors can be improved, and further a reliability of a gate oxide film in a transfer gate can be improved. More particularly, a narrow band gap semiconductor region such as Si.sub.x Ge.sub.1-x, Si.sub.x Sn.sub.1-x, PbS is formed in an interior of a source region or a drain region in the SOI.IG-device. By selecting location and/or mole fraction of the narrow band gap semiconductor region in a SOI film, or selecting a kind of impurity element to compensate the crystal lattice mismatching due to the narrow-bandgap semiconductor region, the generation of crystal defects can be suppressed. Further the structure that the influences of the crystal defects to the transistor or memory characteristics such as the leakage current can be suppressed, even if the crystal defects are generated, are also proposed.