Abstract:
Disclosed herein is a battery pack including a battery module including a cell module stack having a structure in which a plurality of cell modules, each of which includes a battery cell mounted in a cartridge, is vertically stacked, a lower end plate to support a lower end of the cell module stack, an upper end plate to fix an uppermost cartridge of the cell module stack disposed on the lower end plate, and a voltage detection assembly to detect voltages of the battery cells, a box type pack case in which the battery module is mounted, a pack cover coupled to the pack case, and fastening extension members protruding upward from the battery module to couple the battery module to the pack case and the pack cover.
Abstract:
Disclosed is a battery pack including a battery module array constituted by one or more battery modules each including one or more unit modules each configured to have a structure in which a battery cell is surrounded by a cell cover are mounted in a module case in a state in which the unit modules are stacked while being vertically upright, a base plate on which the battery module array is loaded, a pair of end plates to support opposite sides of the array in a state in which a lower end of each of the end plates is fixed to the base plate, and an insulation member disposed between the array and each of the end plates, the insulation member being provided at a surface thereof facing the array with one or more ribs to absorb shock caused by external force and to define a coolant flow channel.
Abstract:
Disclosed herein is a battery pack including (a) a module assembly including two or more battery modules, each of which includes a chargeable and dischargeable battery cell, the battery modules being stacked to have a two layer structure including an upper layer and a lower layer while being in contact with each other in a lateral direction, (b) a first upper layer connection member and a second upper layer connection member mounted at the upper layer module assembly, (c) a first lower layer connection member and a second lower layer connection member mounted at the lower layer module assembly, (d) a pair of side support members, (e) insulation members mounted at interfaces between the sides of the upper and lower layer module assemblies and the side support members, and (f) a first lower end support member and a second lower end support member.
Abstract:
Disclosed herein is a battery pack including a power supply unit including two or more battery cells or battery modules electrically connected to each other, a cut-off portion located at at least one series connection region between the battery cells or modules to interrupt electrical connection in the battery pack upon occurrence of a short circuit of the battery cells or modules guided by a pressure driven switch, the pressure driven switch connected in parallel to the battery cells or modules at which the cut-off portion is located to detect expansion in volume of the battery cells or modules when the power supply unit malfunctions and to guide occurrence of a short circuit of the battery cells or modules, and external input and output terminals connected to electrode terminals located at outermost sides of the power supply unit to supply power to an external device.
Abstract:
Disclosed is a battery module including a plurality of plate-shaped battery cells which are sequentially stacked, wherein the battery module is configured to have a structure in which two or more hexahedral cell units are connected to each other in series in a state in which the hexahedral cell units are stacked, each of the cell units is configured to have a structure in which two or more battery cells are connected to each other in series in a state in which the battery cells are in tight contact with each other, and electrode terminals (outermost electrode terminals) of outmost battery cells of the cell units are connected to external input and output terminals of the battery module, the outermost electrode terminals having a larger vertical sectional area than electrode terminals of the other battery cells such that the outermost electrode terminals are prevented from being broken by external force.
Abstract:
Disclosed is a battery pack including a battery module array including battery modules arranged in two or more rows, a pair of side support members (a front support member and a rear support member) configured to respectively support a front and a rear of the battery module array, lower end support members configured to support a lower end of the battery module array, two or more first upper mounting members coupled to upper ends of the side support members and to lower ends of the inverted battery modules, a second upper mounting member configured to vertically intersect the first upper mounting members, the second upper mounting member being coupled to upper ends of the first upper mounting members, and a rear mounting member located at a rear of the battery module array.
Abstract:
Disclosed herein is a bus bar for electrically connecting electrode leads of unit modules or battery cells (unit cells) in a battery module through a coupling method employing laser welding. Each of the electrode leads and the bus bar has a plate-shaped structure and a protrusion projecting toward the electrode leads is formed on the bus bar at a portion thereof, which is to be welded to the electrode leads through laser irradiation, to allow the portion of the bus bar, which is to be welded to the electrode leads, to be brought into close contact with the electrode leads.
Abstract:
The present application relates to an asymmetry composite material and a method for preparing the same, which provides a composite material comprising a metal porous body (metal foam or the like) and a polymer component, and provides a method for preparing a composite material, wherein the polymer component is formed in an asymmetrical structure on both sides of the metal porous body (metal foam or the like), and a composite material prepared in such a manner.
Abstract:
The present application relates to a composite material and a method for producing the same, which can provide a composite material having excellent impact resistance or processability and pore characteristics while having excellent heat dissipation performance, and a method for producing the composite material.
Abstract:
The present invention relates to a thermosetting composition and a method for curing the same, and provides a thermosetting composition capable of realizing uniform curing physical properties of a cured product.