Abstract:
A disclosure of the present specification provides a method for performing link adaptation by a serving cell which performs interference randomization for inter-cell interference control. The method may comprise the steps of: acquiring interference information on at least one coordination cell to which interference coordination is to be applied among neighbor cells; and performing link adaptation on the basis of the interference information, wherein the interference information includes information on a modulation level, which indicates a modulation scheme for the coordination cell.
Abstract:
A method for configuring an interface with APs of a second radio access technology (RAT) by an entity of a first RAT in a mobile communication system supporting multiple RAT according to an embodiment of the present invention comprises: transmitting a first message including a list of entity zones covered by the entity among a plurality of geographical zones; receiving a second message including a list of AP zones covered by the APs of the second RAT among the plurality of geographical zones in response to the first message; and configuring an interface with at least one AP among the APs of the second RAT on the basis of the list of AP zones.
Abstract:
A method of allocating resources according to the present invention comprises the steps of: allocating a signal having a first beam width from a first base station controlling a first cell to a predetermined resource; and allocating a signal, having a second beam width different from the first beam width, from a second base station controlling a second cell adjacent to the first cell to the resource. The signal having the first beam width may be a signal having a first priority, and the signal having the second beam width may be a signal having a second priority that is different from the first priority. Accordingly, a method for allocating resources is proposed which can stably receive signals even when a terminal that moves in a dense small cell structure is at a cell edge or a border region between cells.
Abstract:
According to one embodiment of the present invention, a method of transmitting feedback information by a base station supporting multi-user multi-input multi-output (MU-MIMO) to a network entity includes obtaining a projection matrix based on channel information estimated for multiple channels between antennas of the base station and each of user equipments, projecting at least one of the channel information and uplink data received from the user equipments to a second space from a first space using the projection matrix and transmitting feedback information including at least one of the projected channel information and the projected uplink data to the network entity.
Abstract:
A method of transmitting signals by a transmitting side device having multiple antennas (hereinafter ‘N antennas’) is disclosed. In this method, the transmitting side device transmits reference signals (RSs) via M antenna among the N antennas, where M≦N, where one or more of M and a sequence of antenna numbers used for transmitting RSs informs a receiving side device of first information for data transmission, and where the RSs are used by the receiving side device for identifying second information for channel estimation. Transmitting side device transmits data to the receiving side device according to the first information.
Abstract:
The present invention provides a method for performing beam measurement in a wireless communication system, and a device for the method. Particularly, a method for a terminal to perform beam measurement in a wireless communication system may comprise: a step of receiving a plurality of reference signals corresponding to a plurality of transmission beams; a step of identifying at least one first transmission beam corresponding to at least one first reception beam included in a first reception beam group, on the basis of measurement performed on the first reception beam group by using the plurality of reference signals; a step of identifying at least one second transmission beam corresponding to at least one second reception beam included in a second reception beam group, on the basis of measurement performed on the second beam group by using the plurality of reference signals; and a step of reporting, to a base station, an index of the identified at least one first transmission beam and an index of the identified at least one second transmission beam, respectively.
Abstract:
The present invention provides a method for measuring a channel between terminals in a wireless communication system, and a device for the method. Particularly, a method for a first terminal to measure a channel in a wireless communication system may comprise: a step of transmitting, to a base station, a first message requesting sounding reference signal (SRS) configuration information associated with a second terminal; a step of receiving, from the base station, a second message including at least one of the SRS configuration information associated with the second terminal and identification information of the second terminal; a step of receiving at least one SRS from the second terminal, by using an SRS configuration associated with the second terminal identified based on the received second message; and a step of measuring a channel with the second terminal by using the received at least one SRS.
Abstract:
A method for a device to perform a transmission in a wireless communication system, includes transmitting a plurality of transmit power control (TPC) commands and receiving physical uplink shared channel (PUSCH) having transmit power determined using one of the plurality of TPC commands, based on a corresponding PUSCH type, wherein each one of the plurality of TPC commands is related with a respective one of PUSCH types, the PUSCH types are related with PUSCH time lengths, and the PUSCH time lengths include a time length shorter than a single subframe.
Abstract:
The present invention provides a method for re-establishing a link between terminals in a wireless communication system, and a device therefor. Particularly, the method for a first terminal to re-establish a link with another terminal in a wireless communication system comprises: a step of determining a radio link failure with respect to a radio link with a second terminal; a step of transmitting a first message, requesting measurement for re-establishing the radio link with the second terminal, to a base station on the basis of the determined radio link failure; a step of receiving a second message, including information on the configuration of the measurement, from the base station in response to the transmitted first message; and a step of transmitting, to the base station, a third message including a report on the radio link with the second terminal which has been re-established by performing the measurement based on the information on the configuration.
Abstract:
A method by which a terminal performs rate matching for a low density parity check (LDPC) code can comprise the steps of: determining any one transport block size (TBS) among a plurality of TBSs set for rate matching in the terminal; and performing rate matching for the LDPC code on the basis of the selected TBS. The UE is capable of communicating with at least one of another UE, a UE related to an autonomous driving vehicle, a base station or a network.