Abstract:
A digital television (DTV) transmitter and a method of coding data in the DTV transmitter are disclosed. A data formatter generates an enhanced data packet including the enhanced data and a known data sequence. A data randomizer randomizes the enhanced data packet. A RS encoder RS-codes the randomized data packet by adding first parity data, and a data interleaver interleaves the RS-coded data packet. A trellis encoding unit trellis-encodes the interleaved data packet. Herein the trellis encoding unit includes a TCM encoder for generating a first output bit by trellis-encoding a first input bit and generating a second output bit by bypassing the first input bit, and a pre-coder for generating a third output bit by pre-coding a second input bit, wherein memories included in the TCM encoder and the pre-coder are initialized when the known data sequence is inputted to the trellis encoding unit.
Abstract:
The present invention provides a data processing method, the data processing method including receiving a broadcasting signal where mobile service data are multiplexed with main service data, extracting transmission-parameter-channel signaling information and fast-information-channel signaling information from a data group within the received mobile service data, parsing first program table information describing virtual channel information of an ensemble and a service provided by the ensemble using the fast-information-channel signaling information, the ensemble the ensemble corresponding to a virtual channel group of the received mobile service data, obtaining information representing that second program table information, which includes a descriptor describing event information of the mobile service data, is received, from the first program table information, parsing the second program table information, and storing the event information and displaying service guide information including the event information.
Abstract:
An enhanced VSB receiver includes a tuner which tunes an RF signal and converts it into an IF signal, an IF mixer which converts the IF signal into a baseband signal, and a demodulator which demodulates the baseband signal into a VSB signal. The enhanced VSB receiver further includes a map recovery unit which recovers VSB map information of the VSB signal, an enhanced equalizer for compensating channel distortion of the VSB signal and outputting an equalized symbol, and an enhanced Viterbi decoder for estimating whether polarity inversion occurred during a symbol period of the equalized symbol and Viterbi-decoding the equalized symbol based on the polarity estimation.
Abstract:
A DTV transmitting system includes an encoder, a randomizer, a block processor, a group formatter, a deinterleaver, and a packet formatter. The encoder codes enhanced data for error correction, permutes the coded data, and further codes the permuted data for error detection. The randomizer randomizes the coded enhanced data, and the block processor codes the randomized data at an effective coding rate of 1/H. The group formatter forms a group of enhanced data having data regions, and inserts the coded enhanced data into at least one of the data regions. The deinterleaver deinterleaves the group of enhanced data, and the packet formatter formats the deinterleaved data into corresponding data bytes.
Abstract:
A digital broadcast transmitting/receiving system and a method for processing data are disclosed. The method for processing data may enhance the receiving performance of the receiving system by performing additional coding and multiplexing processes on the traffic information data and transmitting the processed data. Thus, robustness is provided to the traffic information data, thereby enabling the data to respond strongly against the channel environment which is always under constant and vast change.
Abstract:
A digital broadcasting system which is robust against an error when mobile service data is transmitted and a method of processing data are disclosed. The mobile service data is subjected to an additional coding process and the coded mobile service data is transmitted. Accordingly, it is possible to cope with a serious channel variation while applying robustness to the mobile service data.
Abstract:
A digital television (DTV) transmitting system is provided that includes an encoder, a group formatter, a packet formatter and a transmission unit. The group formatter forms data groups where the plurality of second known data sequences are spaced 16 segments apart within at least one of the data groups that includes a transmission parameter inserted between the first known data sequence and the plurality of second known data sequences and the first known data sequence has a first M-symbol sequence and a second M-symbol sequence, the first M-symbol sequence and the second M-symbol sequence have a first pattern, each of the plurality of second known data sequences has a second pattern other than the first pattern, and the second pattern is positioned from a last symbol to a previous N symbol in each of the plurality of second known data sequences.
Abstract:
A method and apparatus for transmitting a broadcast signal are provided. Data of data packets is encoded to add first parity data to the data packets. The data packets include broadcast data and signaling data for a service. The signaling data includes type information indicating a type of the service and channel information of the service. Information for acquisition of the signaling data is predefined. The encoded data is block interleaved. The block-interleaved data is convolutional interleaved. Transmission parameters are first encoded for signaling the broadcast data to add second parity data to the transmission parameters, and the first-encoded transmission parameters are second encoded at a code rate. A frame including the convolutional interleaved data and the second-encoded transmission parameters is built. The broadcast signal including the frame is transmitted. The transmission parameters include information for identifying a number of the first parity data.
Abstract:
A method of processing broadcast data includes: performing RS encoding and CRC encoding on mobile service data to generate an RS frame belonging to an ensemble including a signaling information table including access information of the mobile service data and identification information for identifying a stream where keys to decrypt the mobile service data are obtained; mapping a portion of data in the RS frame to a group including known data sequences, FIC data, and TPC data, wherein the FIC data includes information for rapid mobile service acquisition, and the TPC data includes FIC version information for indicating an update of the FIC data; and transmitting a broadcast signal including the group. The group further includes data blocks. First, fourth, fifth and sixth known data sequences are inserted into third, fifth, sixth and seventh data blocks, respectively. Second and third known data sequences are inserted into a fourth data block.
Abstract:
A digital television (DTV) receiving system includes an information detector, a resampler, a timing recovery unit, and a carrier recovery unit. The information detector detects a known data sequence which is periodically inserted in a digital television (DTV) signal received from a DTV transmitting system. The resampler resamples the DTV signal at a predetermined resampling rate. The timing recovery unit performs timing recovery on the DTV signal by detecting a timing error from the resampled DTV signal using the detected known data sequence. The carrier recovery unit performs carrier recovery on the resampled DTV signal by estimating a frequency offset value of the resampled DTV signal using the detected known data sequence.