Abstract:
A method of data transmission includes determining the number of layers, generating mapping symbols by mapping modulation symbols for a first codeword and modulation symbols for a second codeword to each layer, and transmitting the mapping symbols through a plurality of antennas. At least one of the first codeword and the second codeword is mapped to at least 3 layers and the number of layers is larger than 3.
Abstract:
A method for specifying a transport block-to-codeword mapping relationship and a method for transmitting a downlink signal using the same are described. If a swap flag has a first logic value, a first transport block is mapped to a first codeword and a second transport block is mapped to a second codeword. If the swap flag has a second logic value, the first transport block is mapped to the second codeword and the second transport block is mapped to the first codeword. If the size of any one of two transport blocks is 0, the swap flag is not used.
Abstract:
A method of transmitting, by a transmitter, information in a wireless communication system, the method includes generating first and second symbols; generating first and second transmit vectors on the basis of an Alamouti code from the first and second symbols; and transmitting the first transmit vector through a first antenna and transmitting the second transmit vector through a second antenna. The first transmit vector consists of a first transmit symbol and a second transmit symbol. The second transmit vector consists of a third transmit symbol and a fourth transmit symbol. The first, second, third, and fourth transmit symbols are transmitted based on first and second resource indexes. The first symbol is a first modulation symbol for first information, and the second symbol is a second modulation symbol for second information.
Abstract:
A method for transmitting a reference signal in a multi-antenna system is provided. The method includes: selecting at least one orthogonal frequency division multiplexing (OFDM) symbol in a subframe containing a plurality of OFDM symbols; allocating a channel quality indication reference signal (CQI RS) capable of measuring a channel state for each of a plurality of antennas to the selected at least one OFDM symbol; and transmitting the CQI RS, wherein the CQI RS is allocated to an OFDM symbol which does not overlap with an OFDM symbol to which a common reference signal to be transmitted to all user equipments in a cell or a dedicated reference signal to be transmitted to a specific user equipment in the cell is allocated.
Abstract:
The present invention relates to a method for transmitting, by a base station, a downlink signal using a plurality of transmission antennas comprises the steps of: applying a precoding matrix indicated by the PMI, received from a terminal, in a codebook to a plurality of layers, and transmitting the precoded signal to the terminal through a plurality of transmission antennas. Among precoding matrices included in the codebook, a precoding matrix for even number transmission layers can be a 2×2 matrix containing four matrices (W1s), the matrix (W1) having rows of a number of transmission antennas and columns of half the number of transmission layers, the first and second columns of the first row in the 2×2 matrix being multiplied by 1, the first column of the second row being multiplied by coefficient “a” of a phase, and the first column of the second row being multiplied by “−a”.
Abstract:
A base station does not transmit any reference signal (RS) for channel measurement in a subframe in which transmission of an RS collides with transmission of a synchronization signal or a broadcast signal or in a resource block including the synchronization signal or the broadcast signal in the subframe. A user equipment assumes that any RS for channel measurement is not transmitted in a subframe or in a resource block when transmission of an RS collides with transmission of a synchronization signal or a broadcast signal in the subframe or in the resource block.
Abstract:
A method and an apparatus for reporting a channel state in a multi-carrier system are provided. User equipment receives an uplink grant including an uplink resource allocation and a channel quality indicator (CQI) request via one downlink carrier from among a plurality of downlink carriers. The user equipment reports CQIs for the plurality of downlink carriers via a plurality of subframes in accordance with the CQI request.
Abstract:
A method and a user equipment (UE) for generating a reference signal sequence in a wireless communication system are discussed. The method according to an embodiment includes receiving a cell-specific sequence hopping parameter from a base station. The cell-specific sequence hopping parameter is used to enable a sequence hopping for a plurality of UEs in a cell if a cell-specific group hopping parameter is used to disable a group hopping for the plurality of UEs in the cell. The method includes receiving a UE-specific sequence group hopping (SGH) parameter, specified to the UE, from the base station. The UE-specific SGH parameter is used to disable the sequence hopping, enabled by the cell-specific sequence hopping parameter. The method includes generating the reference signal sequence based on a base sequence number within a base sequence group. The base sequence number within the base sequence group is determined by the UE-specific SGH parameter.
Abstract:
A user equipment in wireless communication system is provided. The user equipment includes an antenna unit including a plurality of antennas, a control unit for grouping the plurality of antennas into a predetermined number of antenna groups and controlling separately transmission power of each of the predetermined number of antenna groups, and a transmitting unit, connected to the control unit, for transmitting at least one of data and control information to a base station via at least one of the predetermined number of antenna groups.
Abstract:
A method and apparatus for providing information indicating radio resources for multi-cell interference measurement at a BS so that a UE can more accurately measure interference are disclosed.