摘要:
A microelectromechanical (MEMS) device includes a substrate, a movable element over the substrate, and an actuation electrode above the movable element. The movable element includes a deformable layer and a reflective element. The deformable layer is spaced from the reflective element.
摘要:
An interferometric modulator is formed by a stationary layer and a mirror facing the stationary layer. The mirror is movable between the undriven and driven positions. Landing pads, bumps or spring clips are formed on at least one of the stationary layer and the mirror. The landing pads, bumps or spring clips can prevent the stationary layer and the mirror from contacting each other when the mirror is in the driven position. The spring clips exert force on the mirror toward the undriven position when the mirror is in the driven position and in contact with the spring clips.
摘要:
A microelectromechanical (MEMS) device includes a substrate, a movable element over the substrate, and an actuation electrode above the movable element. The movable element includes a deformable layer and a reflective element. The deformable layer is spaced from the reflective element.
摘要:
A microelectromechanical (MEMS) device includes a substrate, a movable element over the substrate, and an actuation electrode above the movable element. The movable element includes a deformable layer and a reflective element. The deformable layer is spaced from the reflective element.
摘要:
A first electrode and a sacrificial layer are sequentially formed on a substrate, and then first openings for forming supports inside are formed in the first electrode and the sacrificial layer. The supports are formed in the first openings, and then a second electrode is formed on the sacrificial layer and the supports, thus forming a micro electro mechanical system structure. Afterward, an adhesive is used to adhere and fix a protection structure to the substrate for forming a chamber to enclose the micro electro mechanical system structure, and at least one second opening is preserved on sidewalls of the chamber. A release etch process is subsequently employed to remove the sacrificial layer through the second opening in order to form cavities in an optical interference reflection structure. Finally, the second opening is closed to seal the optical interference reflection structure between the substrate and the protection structure.
摘要:
A first electrode and a sacrificial layer are sequentially formed on a substrate, and then first openings for forming supports inside are formed in the first electrode and the sacrificial layer. The supports are formed in the first openings, and then a second electrode is formed on the sacrificial layer and the supports, thus forming a micro electro mechanical system structure. Afterward, an adhesive is used to adhere and fix a protection structure to the substrate for forming a chamber to enclose the micro electro mechanical system structure, and at least one second opening is preserved on sidewalls of the chamber. A release etch process is subsequently employed to remove the sacrificial layer through the second opening in order to form cavities in an optical interference reflection structure. Finally, the second opening is closed to seal the optical interference reflection structure between the substrate and the protection structure.
摘要:
A first electrode and a sacrificial layer are sequentially formed on a substrate, and then first openings for forming supports inside are formed in the first electrode and the sacrificial layer. The supports are formed in the first openings, and then a second electrode is formed on the sacrificial layer and the supports, thus forming a micro electro mechanical system structure. Afterward, an adhesive is used to adhere and fix a protection structure to the substrate for forming a chamber to enclose the micro electro mechanical system structure, and at least one second opening is preserved on sidewalls of the chamber. A release etch process is subsequently employed to remove the sacrificial layer through the second opening in order to form cavities in an optical interference reflection structure. Finally, the second opening is closed to seal the optical interference reflection structure between the substrate and the protection structure.
摘要:
Disclosed is an electronic device utilizing interferometric modulation and a package of the device. The packaged device includes a substrate, an interferometric modulation display array formed on the substrate, and a back-plate. The back-plate is placed over the display array with a gap between the back-plate and the display array. The device further includes reinforcing structures which are integrated with the back-plate. The reinforcing structures add stiffness to the back-plate. The back-plate may have a thickness varying along an edge thereof.
摘要:
Disclosed is an electronic device utilizing interferometric modulation and a package of the device. The packaged device includes a substrate, an interferometric modulation display array formed on the substrate, and a back-plate. The back-plate is placed over the display array with a gap between the back-plate and the display array. The depth of the gap may vary across the back-plate. The back-plate can be curved or have a recess on its interior surface facing the display array. Thickness of the back-plate may vary. The device may include reinforcing structures which are integrated with the back-plate.
摘要:
An apparatus and method for reducing perceived color shift as a function of viewing angle is disclosed. One embodiment is a display device that includes a color light modulator and a color filter. The filter is configured to filter wavelengths of light that would be perceived as color shifted light when reflected by the modulator at an off-axis viewing angle. Another embodiment includes a color light modulator and a color light source configured to provide light having a spectral content that lacks the wavelengths that would be perceived as color shifted light by a view of the display at an off-axis viewing angle. Another embodiment are methods of making such display devices.