摘要:
A reaction-based process developed for the selective removal of CO2 from a multicomponent gas mixture to provide a gaseous stream depleted in CO2 compared to the inlet CO2 concentration. The proposed process effects the separation of CO2 from a mixture of gases by its reaction with metal oxides. The Calcium based Reaction Separation for CO2 (CaRS-CO2) process consists of contacting CO2 laden gas with CaO in a reactor such that CaO captures CO2 by the formation of CaCO3. CaCO3 is regenerated by calcination leading to the formation of fresh CaO sorbent and the evolution of a concentrated stream of CO2. The “regenerated” CaO is then recycled for the further capture of CO2. This carbonation-calcination cycle forms the basis of the CaRS-CO2 process. This process also may use a mesoporous CaCO3 structure that attains >90% conversion over multiple carbonation and calcination cycles.
摘要:
A reaction-based process has been developed for the selective removal of carbon dioxide (CO2) from a multicomponent gas mixture to provide a gaseous stream depleted in CO2 compared to the inlet CO2 concentration in the stream. The proposed process effects the separation of CO2 from a mixture of gases (such as flue gas/fuel gas) by its reaction with metal oxides (such as calcium oxide). The Calcium based Reaction Separation for CO2 (CaRS—CO2) process consists of contacting a CO2 laden gas with calcium oxide (CaO) in a reactor such that CaO captures the CO2 by the formation of calcium carbonate (CaCOa). Once “spent”, CaCO3 is regenerated by its calcination leading to the formation of fresh CaO sorbent and the evolution of a concentrated stream of CO2. The “regenerated” CaO is then recycled for the further capture of more CO2. This carbonation-calcination cycle forms the basis of the CaRS—CO2 process. This process also identifies the application of a mesoporous CaCO3 structure, developed by a process detailed elsewhere, that attains >90% conversion over multiple carbonation and calcination cycles. Lastly, thermal regeneration (calcination) under vacuum provided a better sorbent structure that maintained reproducible reactivity levels over multiple cycles.
摘要:
A method for producing hydrogen gas is provided and comprises reducing a metal oxide in a reduction reaction between a carbon-based fuel and a metal oxide to provide a reduced metal or metal oxide having a lower oxidation state, and oxidizing the reduced metal or metal oxide to produce hydrogen and a metal oxide having a higher oxidation state. The metal or metal oxide is provided in the form of a porous composite of a ceramic material containing the metal or metal oxide. The porous composite may comprise either a monolith, pellets, or particles.
摘要:
A process for producing hydrogen comprising the steps of: (i) gasifying a fuel into a raw synthesis gas comprising CO, hydrogen, steam, sulfur and halide contaminants in the form of H2S, COS, and HX, wherein X is a halide; (ii) passing the raw synthesis gas through a water gas shift reactor (WGSR) into which CaO and steam are injected, the CaO reacting with the shifted gas to remove CO2, sulfur and halides in a solid-phase calcium-containing product comprising CaCO3, CaS and CaX2; (iii) separating the solid-phase calcium-containing product from an enriched gaseous hydrogen product; and (iv) regenerating the CaO by calcining the solid-phase calcium-containing product at a condition selected from the group consisting of: in the presence of steam, in the presence of CO2, in the presence of synthesis gas, in the presence of H2 and O2, under partial vacuum, and combinations thereof.
摘要:
A system for converting fuel is provided and includes a first reactor comprising a plurality of ceramic composite particles, the ceramic composite particles comprising at least one metal oxide disposed on a support, wherein the first reactor is configured to reduce the at least one metal oxide with a fuel to produce a reduced metal or a reduced metal oxide; a second reactor configured to oxidize at least a portion of the reduced metal or reduced metal oxide from the said first reactor to produce a metal oxide intermediate; a source of air; and a third reactor communicating with said source of air and configured to regenerate the at least one metal oxide from the remaining portion of the solids discharged from the said first reactor and the solids discharged from the said second reactor by oxidizing the metal oxide intermediate.
摘要:
Dynamic three-dimensional image electrical capacitance tomography sensor system is disclosed. The technique generates, from the measured capacitance, a whole volume image of the region enclosed by the a geometrically three-dimensional capacitance sensor. A real time, three-dimensional imaging of a moving object or a real time volume imaging (i.e., four-dimensional (4D)) allows for a total interrogation scheme of the whole volume within the domain of an arbitrary shape of geometry to be implemented. The system comprises a 3D capacitance sensor, data acquisition electronics and the image reconstruction algorithm which enables the volume-image reconstruction. The electrode shape of the capacitance sensor can be rectangular, triangular, trapezium, or any shape to enclose a 3D section of the measuring domain and to distribute the electrical field intensity in three directions with equal sensitivity strength. The image reconstruction algorithm reconstructs simultaneously the image voxels in a three-dimensional array. The tomography sensor system may be multimodal.
摘要:
A method for mineral sequestration of pollutant gases resulting from the combustion of carbon-based fuels such as carbon and sulfur dioxides is provided and includes, providing a particulate magnesium-containing mineral and exposing the magnesium-containing mineral to a weak acid to dissolve magnesium from the mineral and form a magnesium-containing solution. The surface of the particulate magnesium-containing mineral is physically activated to expose and dissolve additional magnesium into the solution. Pollutant gases such as carbon dioxide are mixed with the magnesium-containing solution. When the pH of the magnesium-containing solution is increased, solid magnesium carbonate is formed.
摘要:
A new image reconstruction technique for imaging two- and three-phase flows using electrical capacitance tomography (ECT) has been developed based on multi-criteria optimization using an analog neural network, hereafter referred to as Neural Network Multi-criteria Optimization Image Reconstruction (NN-MOIRT)). The reconstruction technique is a combination between multi-criteria optimization image reconstruction technique for linear tomography, and the so-called linear back projection (LBP) technique commonly used for capacitance tomography. The multi-criteria optimization image reconstruction problem is solved using Hopfield model dynamic neural-network computing. For three-component imaging, the single-step sigmoid function in the Hopfield networks is replaced by a double-step sigmoid function, allowing the neural computation to converge to three-distinct stable regions in the output space corresponding to the three components, enabling the differentiation among the single phases.
摘要:
Economical NOx reduction from the flue gas is essential for the long-term profitability and existence of fossil fuel based thermal power plants. The proposed process describes the application of activated carbonaceous materials for the post-combustion control of nitric oxide (NOx) emissions from flue gas. Integral experiments were carried out on a variety of carbonaceous species such as graphite, activated carbons and coal char. A selectivity parameter (g carbon consumed/g NO reduced) has been used as a basis for quantifying the effect of the various parameters such as oxygen concentration, alkali impregnation and temperature of reaction on the carbon-NO selectivity. The reaction between pure structured carbon (graphite) required very high temperature. The reaction rate with char and activated carbon was determined to be higher compared to the rate with graphite. The reaction temperature was significantly reduced by the impregnation of carbons with alkali metals. For a given carbon, the selectivity of the carbon-NO reaction increased with temperature. The effect of initial surface area of the carbon was also studied on sodium carbonate impregnated activated char. It was seen that a higher initial surface area increased the selectivity of carbon-NO reaction.