Abstract:
A channel access timer at a communication device is set to a duration for which a shared communication medium is expected to be busy in a basic service set (BSS) heard by the communication device. The channel access timer is counted down. Before the channel access timer reaches zero, respective indications of respective contention free period durations in multiple basic service sets (BSSs) heard by the communication device are recorded in a BSS record maintained by the communication device. Recording the respective indications includes recording, for each particular BSS of the multiple BSSs, (i) an identifier of the particular BSS and (ii) an offset value corresponding to an offset of an end of a contention free period in the particular BSS from an end of a contention free period in the BSS based on which the channel access timer is currently set at the communication device.
Abstract:
Embodiments described herein provide a method for providing a physical-layer control mechanism in accordance with a wireless local area network communication protocol allowing a high data rate. At a wireless receiver, a physical-layer data frame may be received compliant with the wireless local area network communication protocol. When the physical-layer data frame includes only one data unit, a length of an enhanced directional multi-gigabit header from a header associated with the physical-layer data frame may be obtained, and the enhanced directional multi-gigabit header from the physical-layer data frame may be enhanced based on the length. When the physical-layer data frame includes more than one data unit, a first length of a first data unit may be obtained from a first header associated with the first data unit, and the first data unit may be identified from the data frame based on the first length.
Abstract:
A method for transmitting a first field and one or more second fields is described. A number of devices in a group of multiple devices to which a first OFDMA data unit is to be transmitted is selected. A block allocation that indicates respective integer numbers of different tone blocks of a WLAN communication channel to be assigned to each device in the group of multiple devices is selected. A first field is encoded to indicate both the selected number of devices in the group and the selected block allocation. One or more second fields are encoded to indicate a respective device identifier for each device in the group of multiple devices. The first field and the one or more second fields are transmitted to each device in the group of multiple devices.
Abstract:
A method for communicating in a wireless local area network is disclosed herein. The AP sets an uplink target received signal strength information (RSSI) for all participating stations (STAs) and transmits the information to the STAs in a trigger frame. Specifically, the AP sets the uplink target RSSIs for each STA to be within a predetermined range of each other so that when the STAs transmit respective uplink frames, those frames are received at the AP at the set uplink target RSSI.
Abstract:
A method of determining whether a wireless communication medium is clear is carried out on a client device, and includes: associating with a first virtual access point (AP) of a plurality of virtual APs implemented by a physical AP; receiving, from a physical AP, a message identifying the basic service set (BSS) color of each of the plurality of virtual APs implemented by on the physical AP; detecting a packet data unit; measuring the energy of the packet data unit; decoding a BSS color from the packet data unit; if the decoded BSS color is the same as a BSS color in the message from the physical AP, then setting an energy threshold to a first level; if the decoded BSS color is not the same as any BSS color in the message from the physical AP, then setting an energy threshold to a second level, wherein the second level is higher than the first level; and transmitting or refraining from transmitting a packet data unit based on a comparison of the measured energy and the energy threshold.
Abstract:
The present disclosure includes systems and techniques relating to broadcast and multicast in a wireless communication system. In some implementations, an announcement frame indicating a broadcast or multicast service period to multiple second wireless devices is transmitted by a first wireless device. The announcement frame indicates (i) an end time of the broadcast or multicast service period and (ii) an order of a sequence of frames to be directed to the multiple second wireless devices. Each of the sequence of frames is transmitted at the first wireless device using a directional antenna pattern to a respective one of the multiple second wireless devices, according to the order of the sequence of frames indicated in the announcement frame. An acknowledgement frame in response to the each of the sequence of frames is received at the first wireless device from the respective one of the multiple second wireless devices.
Abstract:
Systems and techniques relating to wireless networking systems and techniques, namely employing acknowledgement mechanisms utilized with trigger frames, include: transmitting, by a first wireless device, a first frame, wherein the first frame comprises a field indicating a response frame type associated with reception of the first frame; receiving, by the first wireless device from a second wireless device, an acknowledgement (ACK) frame associated with the field in the first frame via an established wireless communication channel, the ACK frame having a frame type corresponding to the response frame type indicated in the first frame; and receiving, by the first wireless device from the second wireless device, additional frames associated with the ACK frame.
Abstract:
Aspects of the disclosure provide an apparatus for wireless communication. The apparatus includes a transceiver and a processing circuit. The transceiver is configured to receive signals and transmit signals in one or more channels. The processing circuit is configured to detect that received signals in a channel carry a data unit, determine that the data unit belongs to an overlapping basic service set (OBSS) that overlaps with a basic service set (BSS) that the apparatus belongs to without information in a preamble of the data unit, select a clear channel assessment threshold that is dynamically adjusted for spatial re-use when the data unit is determined to belong to the OBSS, and compare a signal strength of the data unit with the selected clear channel assessment threshold to determine a busy/idle status of the channel.
Abstract:
Systems and techniques relating to wireless communications are described. A described technique includes transmitting a signal to cause wireless devices to concurrently transmit sounding packets on different subcarriers within a frequency band during a multi-user uplink transmission; receiving, concurrently, sounding packets from the wireless devices on the different subcarriers within the frequency band during the multi-user uplink transmission; determining subcarrier channel qualities based on the sounding packets; and assigning the subcarriers among the wireless devices for a subsequent multi-user uplink transmission based on the subcarrier channel qualities.
Abstract:
A method for transmitting an orthogonal frequency division multiple access (OFDMA) data unit is described. Respective sub-channels of an orthogonal frequency division multiplexing (OFDM) communication channel are allocated to first and second communication devices for simultaneous OFDM transmission. A first sub-channel is allocated to the first communication device and a second sub-channel is allocated to the second communication device. Indications of the respective allocated sub-channels are transmitted to the first and second communication devices. A medium access control (MAC) protocol data unit (MPDU) is generated that omits i) a MAC address of a transmitter, and ii) a MAC address of the first communication device. An OFDMA data unit including the MPDU is transmitted by the transmitter via the first sub-channel to the first communication device.