Abstract:
A method of uplink shaping and extending UE in RRC Idle Mode is proposed. The UE processes a data packet to be sent to the network. The data packet is associated with a traffic type. If the data packet belongs to a normal traffic type, then the UE enters RRC Connected mode and thereby transmitting the data packet to the network. If the data packet belongs to a background traffic type, then the UE buffers the data packet and the UE is prohibited from entering RRC Connected mode until a triggering condition is satisfied for uplink transmission. The proposed mechanism achieves power saving by reducing the activity of uplink transmission. In addition, the proposed mechanism also reduces signaling overhead to enhance network efficiency.
Abstract:
LWA (LTE/WLAN Aggregation) is a tight integration at radio level which allows for real-time channel and load aware radio resource management across WLAN and LTE to provide significant user perceived throughput (UPT) improvement. When enabling LWA, packets are routed to a base station (eNB) for performing PDCP functionalities as an LTE PDU. Afterwards, the eNB can dispatch the PDU either delivered over LTE link or WLAN link. The UPT improvement depends on how the eNB dispatches the PDU over LTE link or WLAN link. In one novel aspect, the eNB can acquire channel information, load information, and throughput estimation regarding with WLAN link and LTE link. As a result, the eNB can optimize UPT and LWA PDU dispatching algorithm.
Abstract:
Apparatus and methods are provided for user-plane LWA PDU routing. In one novel aspect, LTE PDU packets are routed through a WLAN AP to a UE by encapsulation of the data packets. In one embodiment, a bridge/VLAN architecture is used. The UE identifies one or more Ethernet Frames received the WLAN interface as containing the PDCP PDUs by decoding the EtherType. In another embodiment, the WLAN terminated tunneling is used by decoding the EtherType of indicating the PDCP type. In another novel aspect, an UE-terminated tunneling is created. In one embodiment, the IP tunneling is used. In another embodiment, the GRE tunneling is used. The GRE header contains a KEY field to identify the packets as being the LWA packets. In yet another embodiment, the IPSec tunneling is used. The SPI of the header is used to identify the packets as being the LWA data packets.
Abstract:
Apparatus and methods are provided for LWA PDU routing. In one novel aspect, LTE PDU packets are routed through a WLAN AP to a UE by encapsulation of the data packets. An adaption layer encapsulate the whole packet as an Ethernet frame by appending the Ethernet MAC header to the payload. In other embodiments, the adaption layer encapsulates LTE PDU as GRE packet, configures VLAN for WLAN AP. In another novel aspect, the LTE PDU is identified by at least one of methods comprising the EtherType value, the source address, the GRE header, and the GTP header. In another embodiment, the default path is always used for LWA routing. In yet another novel aspect, the LTE PDU is forwarded by the MAC address, by the GRE tunnel configuration, or by the GTP tunnel configuration.
Abstract:
Apparatus and methods are provided for selection and data aggregation for the LWA. In one novel aspect, the UE connected with a first RAN receives a LWA assistance configuration and selects a second RAN based on the LWA assistance configuration. The UE aggregates data traffic from the first RAN and the selected second RAN. In one embodiment, the information request-and-response procedure is used, which allows the first RAN to query the UE about its second RAN association status. In another embodiment, the selection request-and-response procedure is used, which allows the first RAN to exercise some control over which base station of the second RAN is selected by the UE and for the UE to send relevant information about its second RAN connectivity to the first RAN. In another novel aspect, the UE selects a DRB based on the LWA DRB configuration through either a NAS procedure or an operator configuration.
Abstract:
Various schemes are provided to improve SR resource utilization by adapting SR resource allocation to traffic pattern. In a first Scheme, SR resource allocation is configured more accurately. In one example, UE provides assistant information for eNB to determine or adjust SR configuration based on the received assistant information. In a second Scheme, multiple SR periods are configured and adapted to traffic pattern. In one example, eNB configures a set of SR resources with multiple SR periods, and UE applies different SR periods based on predefined events. Unused SR resources could be recycled by eNB for PUSCH data transmission. In a third Scheme, multiple SR allocations are configured and adapted to concerned applications. In one example, eNB configures multiple sets of SR resources adapted to predefined applications, and UE applies SR configurations based on corresponding applications. The additional SR configurations could be activated and/or deactivated.
Abstract:
A UE establishes an RRC connection with a base station for an application in a mobile communication network. The UE acquires a barring indication that indicates whether scheduling request (SR) barring is applicable for the application. The UE then acquires prioritized barring parameters for SR barring if applicable. The prioritized barring parameters is associated with a priority of the application. Finally, the UE determines whether to send a scheduling request for an arrived packet based on the prioritized barring parameters. In one embodiment, the application is associated with a quality of service (QoS) class indicator (QCI), and the priority of the application is based on the QCI. The prioritized SR barring mechanism based on QCI can be applied for RRC Connected mode with finer granularity.
Abstract:
A method of triggering and reporting traffic statistics in a cellular network is proposed. A UE establishes an RRC connection with a base station. The UE collects traffic statistics upon detecting a trigger event. The traffic statistics comprises packet inter-arrival time. The trigger event may be detected by the UE or by the base station. The UE then determines a representation of the traffic statistics and report the result to the base station. The report may be triggered by the UE or by the base station based on another trigger event. Upon receiving the traffic statistics, the base station determines RRC reconfiguration parameters. In one example, DRX timer values are determined based on intra-burst packet inter-arrival time. In another example, RRC release timer is determined based on inter-burst packet inter-arrival time.