Abstract:
A hydrophobic hybrid organosiloxane nano latex is provided as the copolymerizate of: (a) organosiloxane monomer of the general formula MaMvbDcDvdTeTvfQg wherein: M=R1R2R3SiO1/2, Mv=R4R5RuSiO1/2, D=R6R7SiO2/2, Dv=R8RuSiO2/2, T=R9SiO3/2, Tv=RuSiO3/2, and Q=SiO4/2 in which R1, R2, R3, R4, R5, R6, R7, R8 and R9 each independently is hydrogen, a hydroxyl group, a hydrocarbyl group having up to 100 carbon atoms and optionally containing at least one hetroatom; Ru is a free-radical polymerizable group; subscripts a, b, c, d, e, f and g each independently range from 0 to 10,000 subject to the limitation that b+d+f is at least 1, p, q and r are integers independently selected from 0 to 100 and subscript h is 0 or 1; and, (b) monomer possessing a group which is free-radical copolymerizable with group Ru of organosiloxane monomer (a).
Abstract:
The invention is directed to a cosmetic skin covering sheet which comprises a patch containing a cosmetic material for application to the skin or a cosmetic formulation which forms the cosmetic skin covering sheet in-situ upon topical application of the cosmetic formulation onto the skin, wherein each of said patch or cosmetic formulation comprises an ionic silicone as described herein.
Abstract:
The invention is directed to a personal care composition which contains an ionically-modified cross-linked silicone network which is formed by the polymerization of a silicone polymer containing hydrosilylation effective unsaturated moiety, silyl hydride moiety and ionic radicals.
Abstract:
There is provided a trisiloxane having a 3-(meth)acryloxy-substituted (hydroxylcyclohexyl)ethyl group, useful in making water absorbing silicone-hydrogel films for biomedical devices, such as contact lens, and a process for producing these monomers. This invention also provides for copolymers made from the trisiloxane having a 3-(meth)acryloxy-substituted (hydroxylcyclohexyl)ethyl group described herein.
Abstract:
A composition including an actinic radiation or thermally curable polyorganosiloxane ionomer having one or more reactive groups, for example, vinyl, acrylate, epoxy groups.
Abstract:
A composition including an actinic radiation or thermally curable polyorganosiloxane ionomer having one or more reactive groups, for example, vinyl, acrylate, epoxy groups.
Abstract:
Provided is a silicone polymer of the Formula (I): M1aM2bM3cD1dD2eD3fT1gT2hT3iQj. wherein: M1=R1R2R3SiO1/2 M2=R4R5R6SiO1/2 M3=R7R8R9SiO1/2 D1=R10R11SiO2/2 D2=R12R13SiO2/2 D3=R14R15SiO2/2 T1=R16SiO3/2 T2=R17SiO3/2 T3=R18SiO3/2 Q=SiO4/2 where R1, R2, R3, R5, R6, R8, R9, R10, R11, R13, R15, R16 are independently chosen from a hydrogen, a C1-C60 aliphatic or aromatic group or C1-C60 alkoxy group; R4, R12, R17 are independently chosen from a C1-C60 alkyl, a C1-C60 alkoxy, or R19-A-R20— where A is chosen from a group comprising an unsaturated cyclic moiety chosen from an aromatic group, a fused aromatic group, an unsaturated alicyclic group, an unsaturated heterocyclic group, or a combination of two or more thereof; R19 is chosen from a —H, a C1-C60 alkyl, allyl, vinyl, alkoxy, allyloxy, vinyloxy, acrylate, or methacrylate; and R20 is chosen from a divalent organic group; R7, R14, R18 are independently selected from hydrogen or OR22 or unsaturated monovalent radicals or radicals containing heteroatom such as oxygen, nitrogen, sulfur or radicals containing organosilane groups; and the subscripts a, b, c, d, e, f, g, h, i, j are zero or positive subject to the following limitations: 2≤a+b+c+d+e+f+g+h+i+j≤1000, b+e+h>0 and c+f+i≥0.
Abstract:
A thermally conductive silicone composition is shown and described herein. The thermally conductive silicone composition comprises (A) an ionically modified siloxane, and (B) a thermally conductive filler comprising a first filler and a second filler, where the first filler and/or the second filler comprises a plurality of filler types, the plurality of filler types differing from one another in terms of particle size and/or morphology. The ionically modified siloxane may function as a dispersing aid or wetter for efficient dispersion of thermal conducting organic and inorganic fillers to achieve high thermal conductivity.
Abstract:
A hydrophilic siloxane copolymer of siloxane and hydrophilic organic monomer/s The copolymers can be functionalized to make them capable of undergoing further polymerization by thermal or actinic radiations. The hydrophilicity of these polymers can be varied by varying the siloxane versus organic monomer ratio thereby going from water dispersible to soluble states. The siloxane content can be tuned accordingly in order to provide moderate to high oxygen permeability. These copolymers can be used as a single component curable composition which results in hydrogels to minimize the presence of leachable components thus by reducing the processing cost. The polymers may also find applications in personal care formulations as copolymers, film-formers, hydrogels, coating, emulsions/latex etc.