摘要:
According to one embodiment, a display panel includes a substrate, a switching element, a pixel electrode, an organic light emitting layer, an opposite electrode, a detecting electrode, and an insulating layer. The substrate has a major surface. The switching element is provided on the major surface. The switching element includes a semiconductor layer. The pixel electrode is provided on the major surface. The pixel electrode is electrically connected to the switching element. The organic light emitting layer is provided on the pixel electrode. The opposite electrode is provided on the organic light emitting layer. The detecting electrode is provided between the substrate and at least a part of the pixel electrode. The detecting electrode includes at least one element included in the semiconductor layer. The insulating layer is provided between the pixel electrode and the detecting electrode.
摘要:
[Problem] By improving the accuracy of compensation for a threshold voltage shift of a driving transistor that controls a current supplied to a current-driven type self light-emitting element, excellent display performance is maintained over an extended period of time.[Solving Means] A pixel circuit includes a driving transistor Dr connected at its drain to a light-emitting element 11 and connected at its source to a power supply line NL; a capacitor Ck connected at its one end to a gate of the driving transistor Dr; a threshold voltage detection transistor Det connected between the drain of the driving transistor Dr and an other end of the capacitor Ck; and a reset transistor Rst connected between the source and gate of the driving transistor Dr. By charging the gate of the driving transistor Dr to a predetermined value through the reset transistor Rst and discharging charge at the other end of the capacitor Ck through the threshold voltage detection transistor Det, a potential difference between both ends of the capacitor Ck is set as a threshold voltage of the driving transistor Dr.
摘要:
A thin film transistor includes: an insulating layer; a gate electrode provided on the insulating layer; a gate insulating film provided on the gate electrode; a semiconductor layer provided on the gate insulating film, the semiconductor layer being formed of oxide; a source electrode and a drain electrode provided on the semiconductor layer; and a channel protecting layer provided between the source and drain electrodes and the semiconductor layer. The source electrode is opposed to one end of the gate electrode. The drain electrode is opposed to another end of the gate electrode. The another end is opposite to the one end. The drain electrode is apart from the source electrode. The channel protecting layer covers at least a part of a side face of a part of the semiconductor layer. The part of the semiconductor layer is not covered with the source electrode and the drain electrode above the gate electrode.
摘要:
A magnetic memory includes: a magnetoresistance effect element having a magnetic recording layer; a first writing wiring extending in a first direction on or below the magnetoresistance effect element, a center of gravity of an axial cross section of the wiring being apart from a center of thickness at the center of gravity, and the center of gravity being eccentric toward the magnetoresistance effect element; and a writing circuit configured to pass a current through the first writing wiring in order to record an information in the magnetic recording layer by a magnetic field generated by the current.
摘要:
There are provided a first reference layer, in which a direction of magnetization is fixed, and a storage layer including a main body, in which a length in an easy magnetization axis direction is longer than a length in a hard magnetization axis direction, and a projecting portion provided to a central portion of the main body in the hard magnetization axis direction, a direction of magnetization of the storage layer being changeable in accordance with an external magnetic field.
摘要:
In a magnetic random access memory for generating an inductive magnetic flux by passing current into write wirings disposed closely to MTJ elements, whose resistance values varying depending on the magnetization array state of two magnetic layers of MTJ elements including two magnetic layers that hold a non-magnetic layer correspond to the stored information of “0”/“1”, and writing information by varying the magnetization direction of a free layer of the MTJ elements, the shape of the MTJ elements is warped so as to coincide substantially with the magnetic field curve generated from the write wirings.
摘要:
There is provided a magnetoresistance element in which a shape of a free ferromagnetic layer includes a first portion with a parallelogrammic contour, and second portions that protrude from a pair of opposite corners of the first portion respectively in a main direction parallel to a pair of opposite sides of the first portion, the shape is asymmetric with respect to a line that passes through a center of the first portion and is parallel to the main direction, and an axis of easy magnetization of the free ferromagnetic layer falls within a range defined by an acute angle that a first direction makes with a second direction, the first direction being substantially parallel to the main direction and the second direction being substantially parallel to the longest line segment that joins contours of the second portions.
摘要:
According to one embodiment, a thin film transistor includes a substrate, a gate electrode, a first insulating film, an oxide semiconductor film, a second insulating film, a source electrode, and a drain electrode. The gate electrode is provided on a part of the substrate. The first insulating film covers the gate electrode. The oxide semiconductor film is provided on the gate electrode via the first insulating film. The second insulating film is provided on a part of the oxide semiconductor film. The source and drain electrodes are respectively connected to first and second portions of the oxide semiconductor film not covered with the second insulating film. The oxide semiconductor film includes an oxide semiconductor. Concentrations of hydrogen contained in the first and second insulating films are not less than 5×1020 atm/cm3, and not more than 1019 atm/cm3, respectively.
摘要翻译:根据一个实施例,薄膜晶体管包括衬底,栅电极,第一绝缘膜,氧化物半导体膜,第二绝缘膜,源电极和漏电极。 栅电极设置在基板的一部分上。 第一绝缘膜覆盖栅电极。 氧化物半导体膜经由第一绝缘膜设置在栅电极上。 第二绝缘膜设置在氧化物半导体膜的一部分上。 源极和漏极分别连接到未被第二绝缘膜覆盖的氧化物半导体膜的第一和第二部分。 氧化物半导体膜包括氧化物半导体。 第一绝缘膜和第二绝缘膜中含有的氢的浓度分别为5×1020atm / cm 3以上1019atm / cm 3以下。
摘要:
According to one embodiment, a display device includes a substrate, a thin film transistor, a passivation film, a hydrogen barrier film, a pixel electrode, an organic light emitting layer, an opposite electrode, and a sealing film. The thin film transistor is provided on a major surface of the substrate. The thin film transistor includes a gate electrode, a gate insulating film, a semiconductor film, a first conducting portion, and a second conducting portion. The passivation film is provided on the thin film transistor. The hydrogen barrier film is provided on the passivation film. The pixel electrode is electrically connected to one of the first conducting portion and the second conducting portion. The organic light emitting layer is provided on the pixel electrode. The opposite electrode is provided on the organic light emitting layer. The sealing film is provided on the hydrogen barrier film and the opposite electrode.
摘要:
A thin film transistor includes: an insulating layer; a gate electrode provided on the insulating layer; a gate insulating film provided on the gate electrode; a semiconductor layer provided on the gate insulating film, the semiconductor layer being formed of oxide; source and drain electrodes provided on the semiconductor layer; and a channel protecting layer provided between the source and drain electrodes and the semiconductor layer. The source electrode is opposed to one end of the gate electrode. The drain electrode is opposed to another end of the gate electrode. The another end is opposite to the one end. The drain electrode is apart from the source electrode. The channel protecting layer covers at least a part of a side face of a part of the semiconductor layer. The part of the semiconductor layer is not covered with the source and drain electrodes above the gate electrode.