Abstract:
The width and location of a hysteresis window of an interferometric modulator may be altered by adjusting various physical characteristics of the interferometric modulator. Thus, depending on the particular application for which the interferometric modulators are manufactured, the width and location of the hysteresis window may be altered. For example, in some applications, reducing the power required to operate an array of interferometric modulators may be an important consideration. In other applications, the speed of the interferometric modulators may be of more importance, where the speed of an interferometric modulator, as used herein, refers to the speed of actuating and relaxing the moveable mirror. In other applications, the cost and ease of manufacturing may be of most importance. Systems and methods are introduced that allow selection of a width and location of a hysteresis window by adjusting various physical characteristics.
Abstract:
In one embodiment, the invention provides a method for fabricating a microelectromechanical systems device. The method comprises fabricating a first layer comprising a film having a characteristic electromechanical response, and a characteristic optical response, wherein the characteristic optical response is desirable and the characteristic electromechanical response is undesirable; and modifying the characteristic electromechanical response of the first layer by at least reducing charge build up thereon during activation of the microelectromechanical systems device.
Abstract:
A package structure and method of packaging for an interferometric modulator. A thin film material is deposited over an interferometric modulator and transparent substrate to encapsulate the interferometric modulator. A gap or cavity between the interferometric modulator and the thin film provides a space in which mechanical parts of the interferometric modulator may move. The gap is created by removal of a sacrificial layer that is deposited over the interferometric modulator.
Abstract:
The width and location of a hysteresis window of an interferometric modulator may be altered by adjusting various physical characteristics of the interferometric modulator. Thus, depending on the particular application for which the interferometric modulators are manufactured, the width and location of the hysteresis window may be altered. For example, in some applications, reducing the power required to operate an array of interferometric modulators may be an important consideration. In other applications, the speed of the interferometric modulators may be of more importance, where the speed of an interferometric modulator, as used herein, refers to the speed of actuating and relaxing the moveable mirror. In other applications, the cost and ease of manufacturing may be of most importance. Systems and methods are introduced that allow selection of a width and location of a hysteresis window by adjusting various physical characteristics.
Abstract:
The width and location of a hysteresis window of an interferometric modulator may be altered by adjusting various physical characteristics of the interferometric modulator. Thus, depending on the particular application for which the interferometric modulators are manufactured, the width and location of the hysteresis window may be altered. For example, in some applications, reducing the power required to operate an array of interferometric modulators may be an important consideration. In other applications, the speed of the interferometric modulators may be of more importance, where the speed of an interferometric modulator, as used herein, refers to the speed of actuating and relaxing the moveable mirror. In other applications, the cost and ease of manufacturing may be of most importance. Systems and methods are introduced that allow selection of a width and location of a hysteresis window by adjusting various physical characteristics.
Abstract:
A package is made of a transparent substrate having an interferometric modulator and a back plate. A non-hermetic seal joins the back plate to the substrate to form a package, and a desiccant resides inside the package. A method of packaging an interferometric modulator includes providing a transparent substrate and manufacturing an interferometric modulator array on a backside of the substrate. A back plate is provided and a desiccant is applied to the back plate. The back plate is sealed to the backside of the substrate with a back seal in ambient conditions, thereby forming a package.
Abstract:
Embodiments of exemplary MEMS interferometric modulators are arranged at intersections of rows and columns of electrodes. In certain embodiments, the column electrode has a lower electrical resistance than the row electrode. A driving circuit applies a potential difference of a first polarity across electrodes during a first phase and then quickly transition to applying a bias voltage having a polarity opposite to the first polarity during a second phase. In certain embodiments, an absolute value of the difference between the voltages applied to the row electrode is less than an absolute value of the difference between the voltages applied to the column electrode during the first and second phases.
Abstract:
A package is made of a transparent substrate having an interferometric modulator and a back plate. A non-hermetic seal joins the back plate to the substrate to form a package, and a desiccant resides inside the package. A method of packaging an interferometric modulator includes providing a transparent substrate and manufacturing an interferometric modulator array on a backside of the substrate. A back plate is provided and a desiccant is applied to the back plate. The back plate is sealed to the backside of the substrate with a back seal in ambient conditions, thereby forming a package
Abstract:
A MEMS device is packaged with a control material that is included in the package to affect an operation of a moveable element of the device. The control material may affect operational characteristics including actuation and release voltages and currents, mechanical affects including damping and stiffness, lifetime of the device, optical properties, thermal affects and corrosion. The control material may be inserted into the package as part of any of several structural components of the package or the MEMS device.
Abstract:
MEMS switches are formed with membranes or layers that are deformable upon the application of a voltage. In some embodiments, the application of a voltage opens switch contacts.