摘要:
Provided is an evaluation apparatus that evaluates a characteristic of a propagation apparatus propagating a signal, comprising an output signal measuring section that measures a probability density function expressing a probability density distribution of jitter of an output signal passed by the propagation apparatus; an isolating section that isolates at least one of a random component of a jitter component and a deterministic component of the jitter component in the jitter of the output signal, from the probability density function of the jitter of the output signal; and an evaluating section that evaluates the characteristic of the propagation apparatus based on the jitter component isolated by the isolating section.
摘要:
There is provided a circuit constituted by small-sized and simple logical gates which reduces the bit errors generated in a data sequence received by a receiver. A transmission system, in which a data sequence is transferred, includes a transmitter that transmits a first transfer signal including an edge-present data waveform which has (i) a first timing edge indicating a timing to obtain data included in the data sequence and (ii) a level signal indicating a signal level corresponding to a value of the data, and a receiver that outputs the value of the data in accordance with the signal level which is detected at the timing indicated by the first timing edge of the edge-present data waveform.
摘要:
There is provided a jitter measuring apparatus for measuring jitter in a signal-under-measurement, having a pulse generator for outputting a pulse signal having a pulse width set in advance corresponding to edges-under-measurement from which the timing jitter is to be measured in the signal-under-measurement, a filter for removing carrier frequency components of the signal-under-measurement from the pulse signal and a jitter calculator for calculating the jitter in the signal-under-measurement based on the signal outputted out of the filter.
摘要:
Provided is a signal measurement apparatus, including sampling sections that each sample a signal under measurement having a cycle T with a threshold value, where the threshold values of at least two of the sampling sections are different from each other; a waveform reconfiguring section that shapes a reconfigured waveform having the cycle T by rearranging ordinal ranks of sample values corresponding to each threshold value obtained by the sampling sections, a distribution generating section that generates a timing distribution of edges in the reconfigured waveform corresponding to each threshold value; and a calculating section that calculates rise time or fall time of the signal under measurement based on the timing distribution corresponding to each threshold value.
摘要:
Provided is a skew measurement apparatus, including sampling sections that each sample one of a plurality of signals under measurement having a cycle T, a waveform reconfiguring section that shapes a reconfigured waveform having the cycle T by rearranging ordinal ranks of sample values of the signal under measurement sampled by each sampling section, a distribution generating section that generates a timing distribution of edges in the reconfigured waveform of the corresponding signal under measurement, and a skew calculating section that calculates skew between the signals under measurement being compared based on the timing distribution of each signal under measurement.
摘要:
A printer according to the present invention is a so-called tandem-type printer, and has a configuration that a motor gear is directly connected to an M-photoconductor driving gear and an idler gear is directly connected to a Y-photoconductor driving gear and the M-photoconductor driving gear. A diameter of the Y and M photoconductors driving gear, a distance between transfer sections of the Y and M photoconductors, a motor gear input angle, and an idler input angle are set so that an absolute value of a value obtained by subtracting 1 from an ideal amplitude ratio, which indicates a ratio of an ideal amplitude of an eccentric component of the Y-photoconductor driving gear to an actual amplitude of an eccentric component of the M-photoconductor driving gear, is equal to or less than a maximum allowable amplitude ratio.
摘要:
There is provided a delay circuit that delays and outputs a given input signal. The delay circuit includes a first delaying section that delays the input signal, a second delaying section that further delays the input signal delayed by the first delaying section, and a delay setting section that sets a time delay in the second delaying section at a timing delayed by a predetermined time to a timing setting a time delay in the first delaying section.
摘要:
A connector connects a rotatable body including an attachment hole and an engaging groove, and a shaft pressed into the attachment hole to integrally rotate. The connector includes at least one pin configured to fit in the engaging groove; and a screw having a head configured to be pressed against the rotatable body either directly or via another member. The at least one pin is fixed on the shaft and extends in a radial direction of the shaft to penetrate the shaft. The screw is screwed into a screw hole on an end face of the shaft and is tightened to press the at least one pin against a surface of the engaging groove.
摘要:
Provided is a jitter measurement apparatus that measures timing jitter of a signal under measurement having a prescribed repeating pattern, comprising a sampling section that coherently samples the signal under measurement within a prescribed measurement duration; a waveform reconfiguring section that rearranges ordinal ranks of data values sampled by the sampling section to generate a reconfigured waveform that is a reproduction of a waveform of the signal under measurement; an analytic signal generating section that converts the reconfigured waveform into a complex analytic signal; and a jitter measuring section that measures jitter of the signal under measurement based on the analytic signal.
摘要:
There is provided a calibration apparatus that calibrates a jitter measuring circuit for outputting a jitter measuring signal with a level according to an amount of jitter in an input signal based on the input signal and a delay signal obtained by delaying the input signal by means of a variable delay circuit. The calibration apparatus includes a delay control section that sequentially sets a first delay amount and a second delay amount in the variable delay circuit and a gain computing section that computes gain in the jitter measuring circuit based on the jitter measuring signal respectively output from the jitter measuring circuit for the first delay amount and the second delay amount.