Abstract:
Methods and apparatus for time-to-digital conversion. An example apparatus includes a first input; a second input; a delay line coupled to the first input and comprising a plurality of first delay elements coupled in series, each of the plurality of first delay elements having a first delay time; a second delay element having an input coupled to the second input and having the first delay time; a third delay element having an input coupled to the second input and having a second delay time, the second delay time being smaller than the first delay time; a first set of arbiters having first inputs coupled to the delay line and having second inputs coupled to an output of the second delay element; and a second set of arbiters having first inputs coupled to the delay line and having second inputs coupled to an output of the third delay element.
Abstract:
A voltage-controlled delay line including a clipper configured to produce a clipped input voltage from an input voltage, an oscillator configured to produce a strobe pulse train that is initiated by the clipped input voltage, and a divider module configured to divide the strobe pulse train and produce an output voltage from the divided strobe pulse train.
Abstract:
Systems and methods for delaying a signal are described herein. In one embodiment, a method for delaying a signal comprises receiving a first signal edge, and, in response to receiving the first signal edge, counting a number of oscillations of an oscillator. The method also comprises outputting a second signal edge if the number of oscillations reaches a predetermined number. The second signal edge represents a delayed version of the first signal edge.
Abstract:
Systems and methods are presented for reducing the impact of high load and aging on processor cores in a processor. A Power Management Unit (PMU) can monitor aging, temperature, and increased load on the processor cores. The PMU instructs the processor to take action such that aging, temperature, and/or increased load are approximately evenly distributed across the processor cores, so that the processor can continue to efficiently process instructions.
Abstract:
Systems, methods, and computer readable media that can mitigate the effects of semiconductor aging in a semiconductor device are described. Traditional methods of mitigating semiconductor aging can be wasteful since they overcorrect for aging using a high operational voltage. The approach discussed herein steps up the operational voltage for the electronic device with time based on predetermined aging models. This allows power consumption by the electronic device, particularly early in the designed operational life, to be much less than it would otherwise be.
Abstract:
Embodiments provide systems and methods for dynamically regulating the clock frequency of an integrated circuit (IC) based on the IC supply voltage. By doing so, the clock frequency is no longer constrained by a worst-case voltage level, and a higher effective clock frequency can be supported, increasing the IC performance. Embodiments include a wave clocking system which uses a plurality of delay chains configured to match substantially the delays of respective logic paths of the IC. As the delays of the logic paths vary with supply voltage and temperature changes, the delay chains matched to the logic paths experience substantially similar changes and are used to regulate the clock frequency of the IC.
Abstract:
An integrated circuit, a voltage controlled oscillator (VCO) and a phase-locked loop (PLL). In one embodiment, the VCO includes: (1) a voltage tune line configured to receive a tuning voltage for the VCO and (2) an odd number of ring-coupled delay elements. Each of the delay elements includes: (2A) an inverter having a power supply line being coupled to the voltage tune line and (2B) a feedback path having a gain-attenuating transistor with a gate thereof being coupled to the voltage tune line.
Abstract:
Certain semiconductor processes provide for the use of multiple different types of transistors with different threshold voltages in a single IC. It can be shown that in certain ones of these semiconductor processes, the speed at which high threshold transistors can operate at decreases with decreasing temperature. Thus, the overall processing speed of an IC that implements high, threshold transistors is often limited by the lowest temperature at which the IC is designed (or guaranteed) to properly function. Embodiments of a system and method that overcome this deficiency by “pre-heating” the IC (or at least portions of the IC that implement the high threshold transistors) such that the IC can operate at a frequency (once pre-heated) higher than what would otherwise be possible for a given minimum temperature at which the IC is designed or guaranteed) to properly function at are provided.
Abstract:
The present invention relates to a delay control circuit and a method of controlling delay of an output signal generating based on an input signal, wherein a plurality of delayed replicas of a reference signal are generated with dedicated time delays with respect to the reference signal and are sampled at a predetermined timing defined by the input signal. One of the delayed replicas is selected based on the output of the sampling means, and the output signal is generated based on the selected replica. Thereby, a predetermined phase relationship can be generated even in cases where no strict phase relation is given between data and reference signal.
Abstract:
A phase-combining circuit for combining cyclic timing waveforms that have been phase-controlled by control signals based on three or more input signals of different phases, has a weight signal generating circuit and a weighting circuit. The weight signal generating circuit generates weights according to the control signals, and the weighting circuit gives the weights to the respective input signals, with a positive or negative polarity for each one signal.