Abstract:
Apparatus and methods are provided for enhanced codec control. In one novel aspect, a method includes receiving a codec control command by a user equipment (UE) in a wireless network, determining if the recommended codec characteristic will be applied to a codec executing on the UE, and adjusting a characteristic of the codec executing on the UE based on the recommended codec characteristic. The UE is connected with a radio access network (RAN) and the codec control command includes a recommended codec characteristic. In another novel aspect, the recommended codec characteristic is a maximum bitrate. In another embodiment, the recommended codec characteristic is a type of codec. In yet another novel aspect, the recommended codec characteristic is a radio resource allocation command. In another novel aspect, the UE determines all available codec bitrates that can be performed by the UE and communicates the bitrates before receiving the codec control command.
Abstract:
LTE-WLAN aggregation (LWA) at the radio access network level promises significant gain in system capacity and user quality of experience (QoE). In order to support QoS over LWA, there is a need to develop mechanisms to ensure that the access category (AC) classification chosen by a wireless device (AP in the case of downlink, and UE in case of uplink) is consistent with the QoS requirements of the EPS bearer/DRB and/or subscriber profile to which the traffic belongs. The cellular LTE network can provision QoS for both downlink and uplink data flows that are transferred using LWA access.
Abstract:
LWA (LTE-WLAN Aggregation) is a tight integration at radio level which allows for real-time channel and load aware radio resource management across WLAN and LTE to provide significant capacity and quality of experience (QoE) improvements. When enabling LWA, packets are routed to a base station (eNB) for performing PDCP functionalities as an LTE PDU. Afterwards, the eNB can schedule the PDU either translated over LTE link or WLAN link. The eNB can acquire packet delay information regarding the WLAN link or obtain PDCP layer performance feedback from the UE. As a result, the eNB can adjust PDCP parameter setting and LWA scheduling accordingly.
Abstract:
LTE-WLAN aggregation (LWA) at the radio access network level promises significant gain in system capacity and user quality of experience (QoE). In order to support QoS over LWA, there is a need to develop mechanisms to ensure that the access category (AC) classification chosen by a wireless device (AP in the case of downlink, and UE in case of uplink) is consistent with the QoS requirements of the EPS bearer/DRB and/or subscriber profile to which the traffic belongs. The cellular LTE network can provision QoS for both downlink and uplink data flows that are transferred using LWA access.
Abstract:
LWA (LTE/WLAN Aggregation) is a tight integration at radio level which allows for real-time channel and load aware radio resource management across WLAN and LTE to provide significant user perceived throughput (UPT) improvement. When enabling LWA, packets are routed to a base station (eNB) for performing PDCP functionalities as an LTE PDU. Afterwards, the eNB can dispatch the PDU either delivered over LTE link or WLAN link. The UPT improvement depends on how the eNB dispatches the PDU over LTE link or WLAN link. In one novel aspect, the eNB can acquire channel information, load information, and throughput estimation regarding with WLAN link and LTE link. As a result, the eNB can optimize UPT and LWA PDU dispatching algorithm.
Abstract:
Apparatus and methods are provided for finer control for WLAN association. In one novel aspect, an enhanced NCWIK capability negotiation, an UE assistance information exchange, and an enhanced steering command are performed. In one embodiment, the enhanced NCIWK capacity negotiation includes additional UE information for fine selection. In another embodiment, the UE assistance information is sent to the eNB in addition to the measurement report. The UE assistance information is configured by the eNB. In yet another embodiment, the enhanced traffic steering command includes information of a target AP and one or more target channels. In one embodiment, the enhanced traffic steering command further includes channel direction information. In another novel aspect, the UE selects different UL and DL channels based on the received enhanced traffic steering command. In one embodiment, the UL and DL channels for the UE are different channels from the same AP or from different RATS.
Abstract:
Various methods for wireless communication in a device with co-existed/co-located radios are provided. Multiple communication radio transceivers are co-existed/co-located in a user equipment (UE) having in-device coexistence (IDC) capability, which may result in IDC interference. For example, the UE is equipped with both LTE radio and some ISM band applications such as WiFi and Bluetooth modules. In a first method, the network identifies IDC capability by UE identification (e.g., UE ID). In a second method, the UE intentionally performs cell selection or reselection to cells in non-ISM frequency bands. In a third method, the UE signals the existence of ISM band applications via capability negotiation. In a fourth method, the UE signals the activation of ISM band applications by signaling messages (e.g., RRC message or MAC CE). Under the various methods, the UE and its serving eNB can apply FDM or TDM solutions to mitigate the IDC interference.
Abstract:
A method of supporting group communication over LTE MBMS is provided. A UE first establishes a unicast Evolved Packet Service (EPS) bearer in an LTE network for group communication. The UE belongs to a communication group having a communication group ID. The UE receives access information from the network for monitoring downlink (DL) multicast traffic of the DL group communication based on a multicast decision. The UE is then ready for monitoring a multicast Multimedia Broadcast Multicast Service (MBMS) bearer for receiving the DL multicast traffic. The multicast MBMS bearer is associated with a Temporary Mobile Group Identifier (TMGI), and wherein the TMGI is associated with the communication group ID. In one embodiment, the access information comprises mapping information between the TMGI and the communication group ID.
Abstract:
A method of power headroom reporting (PHR) is proposed. A UE is configured with a plurality of component carriers (CCs) and is served by one or more power amplifiers (PAs) in a wireless system with carrier aggregation. The UE determines transmit power limitation (TPL) information that comprises a set of TPL values, each TPL value corresponds to a UE-configured maximum transmit power for UE-level, PA-level, and CC-level. The TPL information is then reduced to non-redundant TPL values. Based on the non-redundant TPL values, the UE determines power headroom (PH) information that comprises a set of PH values. Each PH value equals to a TPL value subtracted by a UE-calculated transmit power. The UE reports the PH information to a base station via a fixed-length or variable-length MAC CE at each PHR reporting instance.
Abstract:
An adaptive RACH operation is proposed for machine-type communications (MTC) in a 3GPP wireless network. The adaptive RACH operation is based on context information to reduce RACH collision probability, to control network overload, and to enhance system performance. The context information includes device related information and network related information. Device related information includes device type and service or application type. Network related information includes network load information and historical statistics information. Based on the context information, an MTC device adjusts various network access and RACH parameters by applying adaptive RACH operation in different levels. For example, in the application level and the network level, the MTC device adjusts its access probability or RACH backoff time for RACH access. In the radio access network (RAN) level, the MTC device adjusts its access probability or RACH backoff time, or transmits RACH preambles using adjusted RACH radio resources and preambles.