Abstract:
Apparatuses and methods for reducing read disturb are described herein. An example apparatus may include a first memory subblock including a first select gate drain (SGD) switch and a first select gate source (SGS) switch, a second memory subblock including a second SGD switch and a second SGS switch, and an access line associated with the first and second memory subblocks. The apparatus may include a control unit configured to enable the first and second SGD switches and the first and second SGS switches during a first portion of a read operation and to provide a first voltage on the access line during the first portion. The control unit may be configured to disable the first SGD switch and the first SGS switches during a second portion of the read operation and to provide a second voltage on the access line during the second portion.
Abstract:
Apparatuses and methods for threshold voltage (Vt) distribution determination are described. A number of apparatuses can include sense circuitry configured to determine a first current on a source line of an array of memory cells, the first current corresponding to a first quantity of memory cells of a group of memory cells that conducts in response to a first sensing voltage applied to an access line and determine a second current on the source line, the second current corresponding to a second quantity of memory cells of the group that conducts in response to a second sensing voltage applied to the access line. The number of apparatuses can include a controller configured to determine at least a portion of a Vt distribution corresponding to the group of memory cells based, at least in part, on the first current and the second current.
Abstract:
Apparatuses and methods for threshold voltage (Vt) distribution determination are described. A number of apparatuses can include sense circuitry configured to determine a first current on a source line of an array of memory cells, the first current corresponding to a first quantity of memory cells of a group of memory cells that conducts in response to a first sensing voltage applied to an access line and determine a second current on the source line, the second current corresponding to a second quantity of memory cells of the group that conducts in response to a second sensing voltage applied to the access line. The number of apparatuses can include a controller configured to determine at least a portion of a Vt distribution corresponding to the group of memory cells based, at least in part, on the first current and the second current.
Abstract:
Voltage generation circuits are useful in the generation of internal voltages for use in integrated circuits. Voltage generation circuits may include a stage capacitance and a voltage isolation device connected to the stage capacitance. The voltage isolation device may include a first current path between an input and an output of the voltage isolation device through a diode, and a second current path between the input and the output of the voltage isolation device through a gate. The gate is responsive to the contribution of a low-pass filter between the output of the voltage isolation device and the gate, and to the contribution of a high-pass filter between a clock signal node and the gate.
Abstract:
A first switch is closed to initialize a circuit by charging a capacitance of the circuit. A second switch is closed to initialize an amplifier in unity-gain configuration. The amplifier is capacitively coupled to the circuit. The first switch and the second switch are then opened to detect a leakage current of the circuit by detecting a change in an output voltage of the amplifier.
Abstract:
A low-dropout regulator includes an error amplifier to provide a control signal, a first transistor, and a second transistor. The first transistor receives the control signal and has a source-drain path electrically coupled between a supply voltage node and a load, the first transistor to power the load in response to a voltage on the supply voltage node rising above an absolute value of a threshold voltage of the first transistor. The second transistor has a source-drain path electrically coupled between the supply voltage node and the load, the second transistor to receive the control signal in response to the voltage on the supply voltage node rising above a particular voltage.
Abstract:
An embodiment of a method of programming might include applying a first voltage difference across a first memory cell to be programmed, where applying the first voltage difference comprises applying a first channel bias voltage to a channel of the first memory cell, and applying a second voltage difference, substantially equal to the first voltage difference, across a second memory cell to be programmed while applying the first voltage difference across the first memory cell, where applying the second voltage difference comprises applying a second channel bias voltage to a channel of the second memory cell. The first channel bias voltage is different than the second channel bias voltage, and the first memory cell and the second memory cell are commonly coupled to an access line and are at different locations along a length of the access line.