摘要:
A mobile terminal unlock method for security protection is provided. The method includes: obtaining a trigger signal for unlock, and generating a first password according to the trigger signal; generating a corresponding unlock signal according to a preset correspondence between the unlock signal and the first password and with reference to the first password, and sending the corresponding unlock signal; obtaining an unlock password that is obtained by means of parsing by a user according to the unlock signal; matching the unlock password with the first password; determining whether the unlock password is consistent with the first password; and if a determining result is yes, unlocking a password lock; or if a determining result is no, obtaining a trigger signal for unlock again.
摘要:
In a wireless device, a method and system for a baseband receiver interface including analog and digital components are provided. An analog or a digital interface may be selected for a I/Q data signal received from a front-end receiver. The analog interface may be a conventional RF or a VLIF interface. The I/Q data signal may be digitized when received from the analog interface and saturation detection may be used during digitization of the I/Q data signal. When the analog interface is the VLIF interface, a derotator may be used to remove the VLIF frequency. The derotator may be based on a CORDIC algorithm. The I/Q data signal may be converted from serial to parallel format when received from the digital interface. The received I/Q data signal may be decimated before transferred to a baseband processor.
摘要:
Methods and systems for modulating an input electrical signal are disclosed and may comprise modulating input signals utilizing a digital Class-D modulator and generating a digital output signal that is proportional to the input signals. The digital Class-D modulator may be comprised of four stages. To avoid integrator saturation, the output of at least one integrator stage may be limited by utilizing limiters in integrator feedback loops. The digital Class-D modulator utilizes a pulse width modulation technique. For increased signal to noise ratio (SNR) at a desired output power, the magnitude of a triangular waveform oscillator voltage may be greater than the magnitude of an integrated input signal. The digital output signal may be fed back to an input of at least one of the four stages in the digital Class-D modulator. The triangular waveform oscillator frequency may be adjusted to match desired output frequency.
摘要:
A system and method is provided for stabilizing high order sigma delta modulators. The system includes an integrator having a limiter in the feedback path of the integrator. The integrator combines an input signal with a feedback signal generated by the limiter to produce an integrated output signal. The output signal is output to the next component of the sigma delta modulator. In addition, the output signal is fed back through the limiter. When an output signal received in the feedback path by the limiter exceeds the threshold value of the limiter, the limiter is activated and clamps the output signal to produce a limited signal. The limited signal is combined with the input signal to the integrator to produce the output signal.
摘要:
An error feedback circuit includes a first summer receiving an analog input signal and a feedback signal and outputting a summed signal. A quantizer receives the summed signal and outputs a quantized output signal. A limiter receives the summed signal and outputs a limited summed signal. The limiter limits the limited summed signal to α* (maximum value of input signal), α>1. A second summer receives the limited summed signal and the output signal and outputs an error signal. A filter receives the error signal and outputting the feedback signal. Typically, 1.0
摘要:
In a wireless device, a method and system for a baseband receiver interface including analog and digital components are provided. An analog or a digital interface may be selected for a I/Q data signal received from a front-end receiver. The analog interface may be a conventional RF or a VLIF interface. The I/Q data signal may be digitized when received from the analog interface and saturation detection may be used during digitization of the I/Q data signal. When the analog interface is the VLIF interface, a derotator may be used to remove the VLIF frequency. The derotator may be based on a CORDIC algorithm. The I/Q data signal may be converted from serial to parallel format when received from the digital interface. The received I/Q data signal may be decimated before transferred to a baseband processor.
摘要:
An error feedback circuit includes a first summer receiving an analog input signal and a feedback signal and outputting a summed signal. A quantizer receives the summed signal and outputs a quantized output signal. A limiter receives the summed signal and outputs a limited summed signal. The limiter limits the limited summed signal to α*(maximum value of input signal), α>1. A second summer receives the limited summed signal and the output signal and outputs an error signal. A filter receives the error signal and outputting the feedback signal. Typically, 1.0
摘要:
A codifier/decodifier (CODEC) filter circuit (250) connected in a subscriber line interface circuit (202) includes a transmit section (264, 262, 260) for converting differential voltage audio transmit signals representing voice transmissions from the subscriber instrument (202) into encoded digital data for transmission to the digital switching network. A receive section (254, 252) coupled between the digital switching network and subscriber instrument (202) within CODEC (250) for converting encoded digital data representing voice signals switched through the digital switching network to differential voltage audio receive signals for transmission to the subscriber instrument (202). The subscriber loop and subscriber instrument (202) reflect the digital voltage audio signals to the transmit section (264, 262, 260). An impedance section (258, 256) within CODEC (250) connects between the transmit section (264, 262, 260) and the receive section (254, 252) and is disposed to provide an audio band feedback signal between the transmit section (264, 262, 260) and the receive section (254, 252) for synthesizing a source impedance for the subscriber line that matches the subscriber loop impedance. Impedance section (258, 256) includes an analog impedance scaling network (246) coupled between the transmit section (264, 262, 260) and receive section (254, 252). The impedance section (258, 256) also includes a programmable digital filter (258) coupled to the transmit section (264, 262, 260) having a transfer function equal to: (R2T)(1+z−1)/(R1(T+2C2R2)(1+(T−2R2C2)/(T+2R2C2)z−1) where R2 is the second subscriber loop impedance, C2 is the subscriber loop capacitance, R1 is the first subscriber loop impedance, T is the sampling rate of the analog-to-digital converter and z is the frequency of the signal. Furthermore, a summer circuit (256) provides feedback between the programmable digital filter (258) and the receive section (254, 252) by summing the single-ended audio receive signals from the digital switching network with the audio band feedback signal output by the programmable digital filter (258).
摘要:
A data shuffler apparatus for shuffling input bits includes a plurality of bit shufflers each inputting corresponding two bits x0 and x1 of the input bits and outputting a vector {x0′, x1′} such that a number of 1's at bit x0′ over time is within ∀1 of a number of 1's at bit x1′. At least two 4-bit vector shufflers input the vectors {x0′, x1′}, and output 4-bit vectors, each 4-bit vector corresponding to a combination of corresponding two vectors {x0′, x1′} produced by the bit shufflers, such that the 4-bit vector shufflers operate on the vectors {x0′, x1′} in the same manner as the bit shufflers operate on the bits x0 and x1. The current state of the bit shufflers is updated based on a next state of the 4-bit vector shufflers.
摘要:
A video encoding method is provided in the present invention. The method includes: determining a range of interest ROI in an ith frame, wherein the ROI comprises at least one ROI macroblock; extracting characteristic information of the at least one ROI macroblock, wherein the characteristic information comprises location information and type information of the at least one ROI macroblock; determining a quantization parameter QP corresponding to each of the at least one ROI macroblock; encoding the characteristic information of the at least one ROI macroblock according to the determined QP corresponding to each ROI macroblock, to obtain an ROI characteristic stream of the ith frame; and adding, to a video stream of the ith frame, the QP corresponding to each ROI macroblock and the ROI characteristic stream of the ith frame, to perform sending, wherein the video stream of the ith frame is obtained by encoding the ROI and a non-ROI comprised in the ith frame.