摘要:
Provided are methods for programming in a non-volatile memory device, using incremental step pulses as a program voltage that is applied to a selected wordline. Methods may include applying a precharge voltage to an even bitline and an odd bitline such that the even bitline and the odd bitline are alternately charged with the precharge voltage and a boosted voltage that is higher than the precharge voltage. Methods may further include applying a bitline voltage corresponding to program data to a selected bitline of the even bitline and the odd bitline.
摘要:
A method of forming a non-volatile memory device includes forming first mask patterns, which can have relatively large distances therebetween. A distance regulating layer is formed that conformally covers the first mask patterns. Second mask patterns are formed in grooves on the distance regulating layer between the first mask patterns.
摘要:
A non-volatile memory device has improved operating characteristics. The non-volatile memory device includes an active region; a wordline formed on the active region to cross the active region; and a charge trapping layer interposed between the active region and the wordline, wherein a cross region of the active region and the wordline includes an overlap region in which the charge trapping layer is disposed and a non-overlap region in which the charge trapping layer is not disposed.
摘要:
A ferroelectric memory device includes a microelectronic substrate and a plurality of ferroelectric capacitors on the substrate, arranged as a plurality of row and columns in respective row and column directions. A plurality of parallel plate lines overlie the ferroelectric capacitors and extend along the row direction, wherein a plate line contacts ferroelectric capacitors in at least two adjacent rows. The plurality of plate lines may include a plurality of local plate lines, and the ferroelectric memory device may further include an insulating layer disposed on the local plate lines and a plurality of main plate lines disposed on the insulating layer and contacting the local plate lines through openings in the insulating layer. In some embodiments, ferroelectric capacitors in adjacent rows share a common upper electrode, and respective ones of the local plate lines are disposed on respective ones of the common upper electrodes. Ferroelectric capacitors in adjacent rows may share a common ferroelectric dielectric region. Related fabrication methods are discussed.
摘要:
In a node structure under a capacitor in a ferroelectric random access memory device and a method of forming the same, top surfaces of the node structures are disposed at substantially the same level as a top surface of an interlayer insulating layer surrounding the node structures, and thus crystal growth of a ferroelectric in the capacitor can be stabilized. To this end, a node insulating pattern is formed on a semiconductor substrate. A node defining pattern surrounding the node insulating pattern is disposed under the node insulating pattern. A node conductive pattern is disposed between the node defining pattern and the node insulating pattern.
摘要:
A ferroelectric memory device includes a microelectronic substrate and a plurality of ferroelectric capacitors on the substrate, arranged as a plurality of row and columns in respective row and column directions. A plurality of parallel plate lines overlie the ferroelectric capacitors and extend along the row direction, wherein a plate line contacts ferroelectric capacitors in at least two adjacent rows. The plurality of plate lines may include a plurality of local plate lines, and the ferroelectric memory device may further include an insulating layer disposed on the local plate lines and a plurality of main plate lines disposed on the insulating layer and contacting the local plate lines through openings in the insulating layer. In some embodiments, ferroelectric capacitors in adjacent rows share a common upper electrode, and respective ones of the local plate lines are disposed on respective ones of the common upper electrodes. Ferroelectric capacitors in adjacent rows may share a common ferroelectric dielectric region. Related fabrication methods are discussed.
摘要:
A method of operating a non-volatile memory device is disclosed. The memory cell includes a channel region separating a source region and a drain region, a tunnel insulating layer, a charge storage layer, and a gate electrode formed over the channel region. The method includes applying a negative voltage to the gate electrode and applying a positive voltage to at least one of the source and drain regions to inject holes into the tunnel insulating layer and thereby remove electrons trapped in the tunnel insulating layer.
摘要:
A semiconductor memory device is fabricated by forming an active region protruding from a semiconductor substrate, forming an isolation layer on the substrate adjacent opposing sidewalls of the active region, and forming a floating gate electrode on a surface of the active region between the opposing sidewalls thereof. The floating gate electrode is formed to extend beyond edges of the surface of the active region onto the isolation layer. A surface of the floating gate electrode adjacent the active region defines a plane, and the isolation layer is confined between the plane and the substrate. A control gate electrode is formed on a surface of the floating gate electrode opposite the active region. The control gate electrode may be formed to extend along sidewalls of the floating gate electrode towards the substrate beyond the plane defined by the surface of the floating gate electrode adjacent the active region. Related devices are also discussed.
摘要:
A ferroelectric memory device and a method for manufacturing the same. The ferroelectric memory device comprises a lower interlayer insulating layer formed on a semiconductor substrate. The ferroelectric memory device further comprises at least two adjacent ferroelectric capacitors disposed on the lower interlayer insulating layer, an interlayer insulation layer formed over the ferroelectric capacitors, leaving a top surface of the ferroelectric capacitors exposed, a patterned via etch-stop layer formed on the interlayer insulation layer, leaving the top surface of the capacitors exposed, an upper interlayer insulating layer formed on the patterned via etch-stop layer, and a plate line commonly connected to the at least two adjacent ferroelectric capacitors. Thus, integration of the ferroelectric memory device can be substantially increased.
摘要:
Pursuant to embodiments of the present invention, ferroelectric memory devices are provided which comprise a transistor that is provided on an active region in a semiconductor substrate, and a capacitor that has a bottom electrode, a capacitor-ferroelectric layer and a top electrode. These devices may further include at least one planarizing layer that is adjacent to the side surfaces of the bottom electrode such that the top surface of the planarizing layer(s) and the top surface of the bottom electrode form a planar surface. The capacitor-ferroelectric may be formed on this planar surface. The device may also include a plug that electrically connects the bottom electrode to a source-drain region of the transistor. The ferroelectric memory devices according to embodiments of the present invention may reduce ferroelectric degradation of the capacitor.