摘要:
Earth-boring tools include a body, one or more blades projecting outwardly from the body, and cutting elements carried by the blade. The cutting elements include at least one shearing cutting element and at least one gouging cutting element. Methods of forming an earth-boring tool include mounting a shearing cutting element comprising an at least substantially planar cutting face to a body of an earth-boring tool, and mounting a gouging cutting element comprising a non-planar cutting face to the body of the earth-boring tool. The gouging cutting element may be positioned on the body of the earth-boring tool such that the gouging cutting element will gouge formation material within a kerf cut in the formation material by the shearing cutting element, or between kerfs cut in the formation material by a plurality of shearing cutting elements.
摘要:
An earth-boring tool includes a bit body, a plurality of first cutting elements, and a plurality of second cutting elements. Each of the first cutting elements includes a discontinuous phase dispersed within a continuous matrix phase. The discontinuous phase includes a plurality of particles of superabrasive material. Each of the second cutting elements includes a polycrystalline diamond compact or tungsten carbide. A method of forming an earth-boring tool includes disposing a plurality of first cutting elements on a bit body and disposing a second plurality of second cutting elements on the bit body. Another method of foaming an earth-boring tool includes forming a body having a plurality of first cutting elements and a plurality of cutting element pockets and securing each of a plurality of second cutting elements within each of the cutting element pockets.
摘要:
A reactive foil is used to assemble the components of rock bit cutters and to affix cutting elements to rock bit bodies. A small pulse of localized energy ignites the foil in a fraction of a second to deliver the necessary amount of heat energy to flow solder or braze and form a strong, true metallic joint. The reaction in the foil may be activated using optical, electrical, or thermal sources.
摘要:
A method for conducting nondestructive internal inspection of a rotary drill bit used for drilling subterranean formations comprises communicating ultrasonic waves into a drill bit and detecting ultrasonic waves that are reflected by at least a portion of the drill bit. In some embodiments, the waves may be directed into the drill bit from within a longitudinal bore thereof. Reflected waves also may be detected from within the bore. The methods may be used to develop threshold acceptance criteria for classifying drill bits as acceptable or unacceptable to prevent catastrophic failures of drill bits during use. Systems and apparatuses are disclosed for conducting nondestructive ultrasonic inspection of a drill bit used for drilling subterranean formations. The systems and apparatuses may comprise an ultrasonic probe configured for insertion within an internal longitudinal bore of a drill bit. Drill bits are disclosed that are configured to facilitate nondestructive ultrasonic inspection thereof.
摘要:
Methods of forming bit bodies for earth-boring bits include assembling green components, brown components, or fully sintered components, and sintering the assembled components. Other methods include isostatically pressing a powder to form a green body substantially composed of a particle-matrix composite material, and sintering the green body to provide a bit body having a desired final density. Methods of forming earth-boring bits include providing a bit body substantially formed of a particle-matrix composite material and attaching a shank to the body. The body is provided by pressing a powder to form a green body and sintering the green body. Earth-boring bits include a unitary structure substantially formed of a particle-matrix composite material. The unitary structure includes a first region configured to carry cutters and a second region that includes a threaded pin. Earth-boring bits include a shank attached directly to a body substantially formed of a particle-matrix composite material.
摘要:
A method for conducting nondestructive internal inspection of a rotary drill bit used for drilling subterranean formations comprises communicating ultrasonic waves into a drill bit and detecting ultrasonic waves that are reflected by at least a portion of the drill bit. In some embodiments, the waves may be directed into the drill bit from within a longitudinal bore thereof. Reflected waves also may be detected from within the bore. The methods may be used to develop threshold acceptance criteria for classifying drill bits as acceptable or unacceptable to prevent catastrophic failures of drill bits during use. Systems and apparatuses are disclosed for conducting nondestructive ultrasonic inspection of a drill bit used for drilling subterranean formations. The systems and apparatuses may comprise an ultrasonic probe configured for insertion within an internal longitudinal bore of a drill bit. Drill bits are disclosed that are configured to facilitate nondestructive ultrasonic inspection thereof.
摘要:
A cutting element for use in drilling subterranean formations. The cutting element includes a superabrasive table mounted to a supporting substrate. The superabrasive table includes a two-dimensional cutting face having a cutting edge along at least a portion of its periphery, and a surface comprising a chamfer extending forwardly and inwardly from proximate a peripheral cutting edge at a first acute angle of orientation of greater than about 45° with respect to the longitudinal axis of the cutting element, and to no greater than a selected depth. The chamfer may be arcuate or planar, and of a dimension sufficient to ensure that a wear flat generated during use of the cutting element remains outside the inner boundary of the chamfer within the chamfer envelope, and small enough to maintain aggressive cutting characteristics for the cutter. Drill bits and drilling tools bearing the cutting elements are also disclosed.
摘要:
A cutting element for an earth-boring tool. The cutting element comprises a substrate base, and a volume of polycrystalline diamond material on an end of the substrate base. The volume of polycrystalline diamond material comprises a generally conical surface, an apex centered about a longitudinal axis extending through a center of the substrate base, a flat cutting surface extending from a first point at least substantially proximate the apex to a second point on the cutting element more proximate a lateral side surface of the substrate base. Another cutting element is disclosed, as are a method of manufacturing and a method of using such cutting elements.
摘要:
Methods of forming bit bodies for earth-boring bits include assembling green components, brown components, or fully sintered components, and sintering the assembled components. Other methods include isostatically pressing a powder to form a green body substantially composed of a particle-matrix composite material, and sintering the green body to provide a bit body having a desired final density. Methods of forming earth-boring bits include providing a bit body substantially formed of a particle-matrix composite material and attaching a shank to the body. The body is provided by pressing a powder to form a green body and sintering the green body. Earth-boring bits include a unitary structure substantially formed of a particle-matrix composite material. The unitary structure includes a first region configured to carry cutters and a second region that includes a threaded pin. Earth-boring bits include a shank attached directly to a body substantially formed of a particle-matrix composite material.
摘要:
Methods for forming earth-boring tools include providing a metal or metal alloy bonding agent at an interface between a first element and a second element and sintering the first element, the second element, and the boding agent to form a bond between the first element and the second element at the interface. The methods may be used, for example, to bond together portions of a body of an earth-boring tool (which may facilitate, for example, the formation of cutting element pockets) or to bond cutting elements to a body of an earth-boring tool (e.g., a bit body of a fixed-cutter earth-boring drill bit or a cone of a roller cone earth-boring drill bit). At least partially formed earth-boring tools include a metal or metal alloy bonding agent at an interface between two or more elements, at least one of which may comprise a green or brown structure.