Abstract:
An image sensor includes a substrate material, an array of the color filters, an array of waveguides and spacers. The substrate material includes a plurality of photodiodes disposed therein. The array of color filters are disposed over the substrate material. The array of waveguides are disposed over the substrate material. The buffer layer is disposed between the substrate material and the arrays of color filters and waveguides. The spacers are disposed between the color filters in the array of color filters. The spacers are disposed between the waveguides in the array of waveguides. Incident light is adapted to be confined between the spacers. The incident light is adapted to be directed through one of the waveguides and through one of the color filters prior to being directed through the buffer layer into one of the photodiodes in the substrate material.
Abstract:
An image sensor comprises a first photodiode and a second photodiode having a smaller full-well capacitance than the first photodiode, wherein the second photodiode is adjacent to the first photodiode; a first micro-lens is disposed above the first photodiode and on an illuminated side of the image sensor; a second micro-lens is disposed above the second photodiode and on the illuminated side of the image sensor; and a coating layer disposed on both the first and second micro-lens, wherein the coating layer forms a flat top surface on the second micro-lens and a conformal coating layer on the first micro-lens.
Abstract:
An image sensor comprises a semiconductor material having an illuminated surface and a non-illuminated surface; a photodiode formed in the semiconductor material extending from the illuminated surface to receive an incident light through the illuminated surface, wherein the received incident light generates charges in the photodiode; a transfer gate electrically coupled to the photodiode to transfer the generated charges from the photodiode in response to a transfer signal; a floating diffusion electrically coupled to the transfer gate to receive the transferred charges from the photodiode; and a near infrared (NIR) quantum efficiency (QE) and modulation transfer function(MTF) enhancement structure. The NIR QE and MTF enhancement structure comprises: a NIR QE enhancement sub-structure comprising at least one NIR QE enhancement elements within a photosensitive region of the photodiode, wherein the NIR QE enhancement sub-structure is configured to modify the incident light at the illuminated surface of the semiconductor material by at least one of diffraction, deflection and reflection, to redistribute the incident light within the photodiode to improve optical sensitivity, including NIR light sensitivity, of the image sensor; and a MTF enhancement sub-structure disposed on the non-illuminated surface of the semiconductor material, facing toward the NIR QE enhancement sub-structure, wherein the MTF enhancement structure has a geometry corresponding to the NIR QE enhancement sub-structure, to ensure the incident light is still within the photodiode after redistribution.
Abstract:
An image sensor pixel includes a photosensitive element, a floating diffusion region, a transfer gate, a dielectric charge trapping region, and a first metal contact. The photosensitive element is disposed in a semiconductor layer to receive electromagnetic radiation along a vertical axis. The floating diffusion region is disposed in the semiconductor layer, while the transfer gate is disposed on the semiconductor layer to control a flow of charge produced in the photosensitive element to the floating diffusion region. The dielectric charge trapping device is disposed on the semiconductor layer to receive electromagnetic radiation along the vertical axis and to trap charges in response thereto. The dielectric charge trapping device is further configured to induce charge in the photosensitive element in response to the trapped charges. The first metal contact is coupled to the dielectric charge trapping device to provide a first bias voltage to the dielectric charge trapping device.
Abstract:
A photon detection device includes a photodiode having a planar junction disposed in a first region of semiconductor material. A deep trench isolation (DTI) structure is disposed in the semiconductor material. The DTI structure isolates the first region of the semiconductor material on one side of the DTI structure from a second region of the semiconductor material on an other side of the DTI structure. The DTI structure includes a dielectric layer lining an inside surface of the DTI structure and doped semiconductor material disposed over the dielectric layer inside the DTI structure. The doped semiconductor material disposed inside the DTI structure is coupled to a bias voltage to isolate the photodiode in the first region of the semiconductor material from the second region of the semiconductor material.
Abstract:
A photon detection device includes a photodiode having a planar junction disposed in a first region of semiconductor material. A deep trench isolation (DTI) structure is disposed in the semiconductor material. The DTI structure isolates the first region of the semiconductor material on one side of the DTI structure from a second region of the semiconductor material on an other side of the DTI structure. The DTI structure includes a dielectric layer lining an inside surface of the DTI structure and doped semiconductor material disposed over the dielectric layer inside the DTI structure. The doped semiconductor material disposed inside the DTI structure is coupled to a bias voltage to isolate the photodiode in the first region of the semiconductor material from the second region of the semiconductor material.