Abstract:
A single-exposure high dynamic range (HDR) image sensor includes a first photodiode and a second photodiode, with a smaller full-well capacity than the first photodiode, disposed in a semiconductor material. The image sensor also includes a first floating diffusion disposed in the semiconductor material and a first transfer gate coupled to the first photodiode to transfer first image charge accumulated in the first photodiode into the first floating diffusion. A second floating diffusion is disposed in the semiconductor material and a second transfer gate is coupled to the second photodiode to transfer second image charge accumulated in the second photodiode into the second floating diffusion. An attenuation layer is disposed between the second photodiode and image light directed towards the single-exposure HDR image sensor to block a portion of the image light from reaching the second photodiode.
Abstract:
An imaging system includes a pixel array of pixel cells with each one of the pixel cells including a photodiode disposed in a semiconductor material, a global shutter gate transistor, disposed in the semiconductor material and coupled to the photodiode, a storage transistor disposed in the semiconductor material, an optical isolation structure disposed in the semiconductor material to isolate a sidewall of the storage transistor from stray light and stray charge. The optical isolation structure also includes a deep trench isolation structure that is filled with tungsten and a P+ passivation formed over an interior sidewall of the deep trench optical isolation structure. Each one of the pixel cells also include control circuitry coupled to the pixel array to control operation of the pixel array and readout circuitry coupled to the pixel array to readout image data from the plurality of pixels.
Abstract:
A method of image sensor fabrication includes growing a semiconductor material having an illuminated surface and a non-illuminated surface, where the semiconductor material includes silicon and germanium and a germanium concentration increases in a direction of the non-illuminated surface. The method further includes forming a plurality of photodiodes, including a doped region and a heavily doped region, in the semiconductor material, where the doped region is of an opposite majority charge carrier type as the heavily doped region. A plurality of isolation regions are formed and disposed between individual photodiodes in the plurality of photodiodes, where the plurality of isolation regions surround, at least in part, the individual photodiodes and electrically isolate the individual photodiodes.
Abstract:
An image sensor includes a semiconductor material having an illuminated surface and a non-illuminated surface. A plurality of photodiodes is disposed in the semiconductor material to receive image light through the illuminated surface. The semiconductor material includes silicon and germanium, and the germanium concentration increases in a direction of the non-illuminated surface. A plurality of isolation regions is disposed between individual photodiodes in the plurality of photodiodes. The plurality of isolation regions surround, at least in part, the individual photodiodes and electrically isolate the individual photodiodes.
Abstract:
A stacked image sensor includes a first plurality of photodiodes, including a first photodiode and a second photodiode, disposed in a first semiconductor material. A thickness of the first semiconductor material proximate to the first photodiode is less than the thickness of the first semiconductor material proximate to the second photodiode. A second plurality of photodiodes is disposed in a second semiconductor material. The second plurality of photodiodes is optically aligned with the first plurality of photodiodes. An interconnect layer is disposed between the first semiconductor material and the second semiconductor material. The interconnect layer includes an optical shield disposed between the second photodiode and a third photodiode included in the second plurality of photodiodes. The optical shield prevents a first portion of image light from reaching the third photodiode.
Abstract:
An image sensor pixel for use in a high dynamic range image sensor includes a first photodiode, a plurality of photodiodes, a shared floating diffusion region, a first transfer gate, and a second transfer gate. The first photodiode is disposed in a semiconductor material. The first photodiode has a first light exposure area and a first doping concentration. The plurality of photodiodes is also disposed in the semiconductor material. Each photodiode in the plurality of photodiodes has the first light exposure area and the first doping concentration. The first transfer gate is coupled to transfer first image charge from the first photodiode to the shared floating diffusion region. The second transfer gate is coupled to transfer distributed image charge from each photodiode in the plurality of photodiodes to the shared floating diffusion region.
Abstract:
An image sensor pixel includes a photodiode region having a first polarity doping type disposed in a semiconductor layer. A pinning surface layer having a second polarity doping type is disposed over the photodiode region in the semiconductor layer. A first polarity charge layer is disposed proximate to the pinning surface layer over the photodiode region. A contact etch stop layer is disposed over the photodiode region proximate to the first polarity charge layer. The first polarity charge layer is disposed between the pinning surface layer and the contact etch stop layer such that first polarity charge layer cancels out charge having a second polarity that is induced in the contact etch stop layer. The first polarity charge layer is disposed between a first one of a plurality of passivation layers and a second one of the plurality of passivation layers disposed over the photodiode region.
Abstract:
An image sensor pixel includes one or more photodiodes disposed in a semiconductor layer. Pixel circuitry is disposed in the semiconductor layer coupled to the one or more photodiodes. A passivation layer is disposed proximate to the semiconductor layer over the pixel circuitry and the one or more photodiodes. A contact etch stop layer is disposed over the passivation layer. One or more metal contacts are coupled to the pixel circuitry through the contact etch stop layer. One or more isolation regions are defined in the contact etch stop layer that isolate contact etch stop layer material through which the one or more metal contacts are coupled are coupled to the pixel circuitry from the one or more photodiodes.
Abstract:
A method for manufacturing a high-dynamic-range color image sensor includes (a) depositing a color filter layer on a silicon substrate having a photosensitive pixel array with a plurality of first pixels and a plurality of second pixels, to form (i) a plurality of first color filters above a first subset of each of the plurality of first pixels and the plurality of second pixels and (ii) a plurality of second color filters above a second subset of each of the plurality of first pixels and the plurality of second pixels, wherein thickness of the second color filters exceeds thickness of the first color filters, and (b) depositing, on the color filter layer, a dynamic-range extending layer including grey filters above the second pixels to attenuate light propagating toward the second pixels, combined thickness of the color filter layer and the dynamic-range extending layer being uniform across the photosensitive pixel array.
Abstract:
A method of image sensor fabrication includes forming a photodiode and a floating diffusion in a first semiconductor material, and removing part of an oxide layer disposed proximate to a seed area on a surface of the first semiconductor material. The method also includes depositing a second semiconductor material over the surface of the first semiconductor material, and annealing the first semiconductor material and second semiconductor material. A portion of the second semiconductor material is etched away to form part of a source follower transistor, and dopant is implanted into the second semiconductor material to form a first doped region, a third doped region, and a second doped region. The second doped region is laterally disposed between the first doped region and the third doped region, and the second doped region is a channel of the source follower transistor.