Abstract:
An imaging device including: a first photoelectric converter that generates a first signal by photoelectric conversion; a first transistor having a gate configured to be electrically coupled to the first photoelectric converter; a second photoelectric converter that generates a second signal by photoelectric conversion; a capacitor having a first terminal and a second terminal, the first terminal being configured to be electrically coupled to second photoelectric converter, a first potential being applied to the second terminal; and a switch element provided between the gate of the first transistor and the first terminal of the capacitor.
Abstract:
A solid-state imaging device includes: pixels arranged in a matrix; a vertical signal line provided for each column, conveying a pixel signal; a power line provided for each column, proving a power supply voltage; and a feedback signal line provided for each column, conveying a signal from a peripheral circuit to a pixel, in which each of the pixels includes: an N-type diffusion layer; a photoelectric conversion element above the N-type diffusion layer; and a charge accumulation node between the N-type diffusion layer and the photoelectric conversion element, accumulating signal charge generated in the photoelectric conversion element, the feedback signal line, a metal line which is a part of the charge accumulation node, the vertical signal line, and the power line are disposed in a second interconnect layer, and the vertical signal line and the power line are disposed between the feedback signal line and the metal line.
Abstract:
An imaging device includes a first image pickup cell having a first photoelectric converter converting incident light into first charges, the first photoelectric converter including a first pixel electrode, a first electrode, and a first photoelectric conversion region between the first pixel electrode and the first electrode, and a first charge storage node coupled to the first pixel electrode for accumulating the first charges; a second image pickup cell having a second photoelectric converter converting incident light into second charges, the second photoelectric converter including a second pixel electrode, a second electrode, and a second photoelectric conversion region between the second pixel electrode and the second electrode, and a second charge storage node coupled to the second pixel electrode for accumulating the second charges. The first pixel electrode has a first area, and the second pixel electrode has a second area less than the first area.
Abstract:
An optical sensor includes: a semiconductor layer including a first region, a second region, and a third region between the first region and the second region; a gate electrode facing to the semiconductor layer; a gate insulating layer between the third region and the gate electrode, the gate insulating layer including a photoelectric conversion layer; a signal detection circuit including a first signal detection transistor, a first input of the first signal detection transistor being electrically connected to the first region; a first transfer transistor connected between the first region and the first input; and a first capacitor having one end electrically connected to the first input. The signal detection circuit detects an electrical signal corresponding to a change of a dielectric constant of the photoelectric conversion layer, the change being caused by incident light.
Abstract:
An imaging device according to one aspect of the present disclosure includes: a first image pickup cell comprising a first photoelectric converter that converts incident light into a first charge, a first charge detection circuit that is electrically connected to the first photoelectric converter and detects the first charge, and a first capacitive element one end of which is electrically connected to the first photoelectric converter, the first capacitive element storing at least a part of the first charge; and a second image pickup cell comprising a second photoelectric converter that converts incident light into a second charge, and a second charge detection circuit that is electrically connected to the second photoelectric converter and detects the second charge.
Abstract:
A solid-state imaging device according to an aspect of the present disclosure includes pixel including: a first and second electrode located in a same layer, the second electrode being located between the first electrode and the other first electrodes included in adjacent pixels; an organic photoelectric conversion film including a first surface and a second surface, the first surface being in contact with the first electrode and the second electrode; and a counter electrode located on the second surface. The organic photoelectric conversion film extends over the pixels. The first electrode is an electrode through which electrons or holes generated in the organic photoelectric conversion film are extracted. An area ratio of the first electrode to the each pixel is 25% or less. And a total area ratio of a sum of the first electrode and the second electrode to the each pixel is 40% or greater.
Abstract:
A solid-state imaging device has a plurality of imaging-purpose pixels and a plurality of focus detection-purpose pixels. Each of the imaging-purpose pixels are provided with a first lower electrode, a photoelectric conversion film formed on the first lower electrode, and an upper electrode formed on the photoelectric conversion film. Each of the focus detection-purpose pixels is provided with a second lower electrode, the photoelectric conversion film formed on the second lower electrode, and the upper electrode formed on the photoelectric conversion film. The area of the second lower electrode is smaller than the area of the first lower electrodes. The second lower electrode is provided on a position deviating from a pixel center of a corresponding focus detection-pixel, and two second lower electrodes corresponding to two focus detection purpose pixels included in the plurality of focus detection purpose pixels is arranged in mutually opposite directions.
Abstract:
An imaging device includes: a first pixel including a first photoelectric converter that converts incident light into first signal charges, and a first charge storage node that accumulates the first signal charges; and a second pixel including a second photoelectric converter that converts incident light into second signal charges, and a second charge storage node that accumulates the second signal charges. An area of the second photoelectric converter is greater than an area of the first photoelectric converter in a plan view. Capacitance of the first charge storage node is greater than capacitance of the second charge storage node.
Abstract:
An imaging device includes a photoelectric conversion layer having a first surface and a second surface opposite to the first surface; a counter electrode on the first surface; a first electrode on the second surface; a second electrode on the second surface, the second electrode being spaced from the first electrode; and an auxiliary electrode on the second surface between the first electrode and the second electrode. The auxiliary electrode is spaced from the first electrode and the second electrode, where a shortest distance between the first electrode and the auxiliary electrode is different from a shortest distance between the second electrode and the auxiliary electrode.
Abstract:
An imaging device comprising: a first pixel cell including a first photoelectric converter generating a first signal, the first photoelectric converter including a first electrode and a first photoelectric conversion region on the first electrode, and a first circuit coupled to the first electrode and detecting the first signal; and a second pixel cell including a second photoelectric converter generating a second signal, the second photoelectric converter including a second electrode and a second photoelectric conversion region on the second electrode, and a second circuit coupled to the second electrode and detecting the second signal. A sensitivity of the first pixel cell is higher than that of the second pixel cell. A circuit configuration of the first circuit is different from that of the second circuit. The first circuit includes a feedback circuit configured to negatively feed back a voltage of the first electrode to the first electrode.