Abstract:
In this invention, we disclose methods directed toward integrating an ad hoc cellular network into a fixed cellular network. The methods disclosed herein automate the creation and integration of these networks. In additional embodiments, we disclose methods for establishing a stand-alone, ad hoc cellular network. In either of these implementations, we integrate or establish an ad hoc cellular network using mobile ad hoc cellular base stations configured to transmit and receive over a variety of frequencies, protocols, and duplexing schemes. The methods flexibly and dynamically choose an access or backhaul configuration and radio characteristics to optimize network performance. Additional embodiments provide for enhancing an existing network's coverage as needed, establishing a local network in the event of a loss of backhaul coverage to the core network, and providing local wireless access service within the ad hoc cellular network.
Abstract:
This invention discloses a heterogeneous mesh network comprised of multiple radio access technology nodes, wherein nodes can function dynamically, switching roles between client and server. Moreover, these nodes can operate in a heterogeneous fashion with respect to one another. In an alternate embodiment, the invention describes a mesh network comprised of nodes operating over TV white-space. This invention additionally discloses self-organizing network embodiments and embodiments that include novel methods of monitoring operational parameters within a mesh network, adjusting those operational parameters, and creating and implementing routing tables.
Abstract:
Systems and methods are disclosed for performing computations on data at an intelligent data pipe en route to a data store. In one embodiment, a method is disclosed, comprising: receiving metadata regarding a data stream from a data source; performing an analysis of the metadata at a service orchestrator; creating at least one container instance based on the analysis; streaming the data stream from the data source to a data sink via the at least one container; and processing the data stream as it passes through the at least one container instance, thereby enabling application-aware processing of data streams in real time prior to arrival at the data store.
Abstract:
A method may be disclosed in accordance with some embodiments, comprising: receiving, at a virtualizing gateway, a first service request from a first user equipment (UE) via a first eNodeB; creating, at the virtualizing gateway, an association from each of a plurality of UE identifiers to a desired core network; applying, at the virtualizing gateway, a first filter using a first UE identifier of the first UE, based on the association; forwarding, at the virtualizing gateway, based on the applied first filter, the first service request from the first UE to the first core network; receiving, at the virtualizing gateway, via a second eNodeB, a second service request from a second user equipment (UE); applying, at the virtualizing gateway, a second filter using a second UE identifier of the second UE, based on the association; and forwarding, at the virtualizing gateway, based on the applied second filter, the second service request from the second UE to the second core network.
Abstract:
Systems, methods and computer software are disclosed for fronthaul. In one embodiment a method is disclosed, comprising: providing a virtual Radio Access Network (vRAN) having a centralized unit (CU) and a distributed unit (DU); and interconnecting the CU and DU over an Input/Output (I/O) bus using Peripheral Component Interconnect-Express (PCIe); wherein the CU and the DU include a PCI to optical converter and an optical to PCI converter.
Abstract:
A microcomponent massive MIMO array is presented. The microcomponent massive array includes a general purpose processor and an integrated power amplifier and transmitter device including a software defined radio (SDR) and a plurality of polar power amplifiers (PAs) disposed on a single integrated circuit, wherein the integrated power amplifier and transmitter device is in communication with the general purpose processor. The microcomponent massive MIMO array further includes an antenna array in communication with the integrated power amplifier and transmitter device.
Abstract:
In some embodiments, a local community may manage its own RAN via a simple, secure, self-service user interface in conjunction with a mobile operator. An exemplary system is disclosed, including: at least two base stations providing wireless access to one or more mobile devices and located in a community; a gateway providing a connection to a core network for the at least two base stations; a management functionality in the core network, in communication with the gateway, for authorizing management activities for the at least two base stations; and a user-facing administration module in communication with the management functionality, the user-facing administration module having: a user interface for providing management control to an administrative user in the community.
Abstract:
Described herein are systems and methods for providing software provisioning of functionality in a wireless communications device. Software-enabling functionality may include systems for granting a license to intellectual property or other pre-embedded functionality within a device. Communications to and from the device may be used to send or receive activation messages and/or licensing messages. Network capabilities may be provisioned using activation messages sent over the network. Activation messages may be sent in-band or out-of-band, for a device connected to the Internet and/or a mobile operator core network. Licenses may be required for any functions or intellectual property present on a given device. Activation may enable logical modules of a system-on-chip (SOC), functions of a software-defined radio (SDR), baseband, or DSP core. The disclosed systems and methods could thereby provide a new, flexible paradigm, namely, “Silicon as a Service (SaaS).”
Abstract:
Systems, methods and computer software are disclosed for providing base station and Remote Radio Head (RRH) functionality. In one embodiment, a method is disclosed, the method for providing base station and Remote Radio Head (RRH) functionality in a base station, comprising: providing a baseband card; providing a radio head, the radio head coupled to the baseband card by way of an interface; and switching, under the control of a processor, between use of the baseband card and use of an external baseband unit for controlling the radio head, the external baseband unit used via a Common Public Radio Interface (CPRI) port, thereby providing dual base station and remote radio head functionality.
Abstract:
Digital Beam-Formed Data Packet Communication Across Serially-Connected Transceivers by receiving modulated RF signals at a plurality of signal ports of each transceiver IC in a subarray of serially connected transceiver ICs and generating one or more frequency domain digital data packets of subcarrier IQ data associated with each signal port by demodulating each modulated RF signal from each signal port using an FFT processor within the respective transceiver ICs, and forming a plurality of combined frequency domain digital data packets from the transceiver ICs using a set of serial data links between the transceiver ICs of the subarray of serially connected transceiver ICs; and transmitting the plurality of combined frequency domain digital data packets from the subarray of transceiver ICs to a beamformer processor.