Abstract:
Systems, methods, apparatuses, and computer-program products for performing dynamic bandwidth switching between control signals and data signals of differing bandwidths are disclosed. Frame formats are disclosed in which control signals are transmitted at different bandwidths than data signals. Receiver architectures for receiving the signaling formats are disclosed. A receiver can receive a relatively narrowband control signal while consuming a relatively low power and then dynamically adjust characteristics of various components to receive a data signal at a higher bandwidth while consuming a relatively higher power.
Abstract:
Systems, methods, apparatuses, and computer-program products for performing dynamic bandwidth switching between control signals and data signals of differing bandwidths are disclosed. Frame formats are disclosed in which control signals are transmitted at different bandwidths than data signals. Receiver architectures for receiving the signaling formats are disclosed. A receiver can receive a relatively narrowband control signal while consuming a relatively low power and then dynamically adjust characteristics of various components to receive a data signal at a higher bandwidth while consuming a relatively higher power.
Abstract:
Methods, systems, and devices for wireless communications are described. A user equipment (UE) may be capable of operating according to a first transmission efficiency operating mode and a second transmission efficiency operating mode that is less power efficient than the first transmission efficiency operating mode. The first transmission efficiency operating mode may be associated with a first undesired emission level that is greater than a second undesired emission level associated with the second transmission efficiency operating mode. The UE may select to operate in one of the two transmission efficiency operating modes based on one or more communication parameters (e.g., indicated by control signaling received from a base station). For example, the UE may select to operate in the first transmission efficiency operating mode based on determining that one or more of the communication parameters satisfies at least one parameter criterion for operating in the first transmission efficiency operating mode.
Abstract:
Various aspects of the present disclosure generally relate to wireless communication. In some aspects, a wireless communication device may receive, from another wireless communication device, an indication of an averaging parameter associated with a transmitter nonlinear model. The wireless communication device may estimate the transmitter nonlinear model based at least in part on the indication of the averaging parameter associated with the transmitter nonlinear model. Numerous other aspects are described.
Abstract:
During an uplink TDD slot, an UL UE transmits an UL signal that occupies a slot frequency range. Similarly, during a DL TDD slot, a DL UE receives a DL signal that occupies the slot frequency range. But during an SBFD slot, a UL UE transmits a UL signal that occupies only a first sub-band of the slot frequency range. Similarly, a DL UE receives a DL signal during an SBFD slot that occupies only a second sub-band of the slot frequency range. The second sub-band is distinct from the first sub-band. The DL UE may thus mitigate UE-to-UE interference during an SBFD slot by filtering the DL signal to substantially block the second sub-band from being received at the DL UE.
Abstract:
The transmission and reception group delay in a front end structure of a mobile device may be determined using closed loop calibration. The closed loop may be a near field radiated closed loop between pairs of antennas in an antenna array of the mobile device. The delay based on time of transmission and time of reception may be measured for a plurality of pairs of antennas, from which the transmit and receive group delay within a single path may be determined. The propagation delay of the signal between antennas may be included in the group delay calibration for increased accuracy. In another implementation, a conducted closed loop, e.g., in the transceiver or in a radio frequency switching network may be used to calibrate the group delay. Pre-characterization of the delay caused by components between the closed loop and antennas may be included in the group delay calibration for increased accuracy.
Abstract:
Various aspects of the present disclosure generally relate to wireless communication. In some aspects, a first wireless communication device (WCD) may receive an indication of an error parameter associated with communications that use digital post distortion (DPoD) at the first WCD. The WCD may receive, from a second WCD, a communication based at least in part on the error parameter, wherein the communication has digital peak-to-average-power-ratio (PAPR) reduction applied, and wherein receiving the communication comprises application of DPoD to the communication. Numerous other aspects are described.
Abstract:
An apparatus is disclosed for frequency-based predistortion signal generation. In an example aspect, the apparatus includes a predistortion linearizer circuit configured to be coupled to an input of an amplifier. The amplifier has non-linearities associated with multiple frequencies. The multiple frequencies include a first subset of frequencies and a second subset of frequencies. The predistortion linearizer circuit is also configured to accept an input signal. The predistortion linearizer circuit is additionally configured to generate, based on the input signal, a compensation signal to attenuate the non-linearities existing within the first subset of frequencies more than the non-linearities existing within the second subset of frequencies. The predistortion linearizer circuit is further configured to generate a pre-distorted signal based on the input signal and the compensation signal.
Abstract:
Certain aspects of the present disclosure relate to methods and apparatus for interference management with adaptive resource block (RB) allocation. In an exemplary method, a user equipment (UE) receives, from a base station (BS), an indication of a first set of resource blocks (RBs) to receive a first downlink (DL) transmission in a time interval, the UE receives, from the BS, an indication of a dynamically allocated second set of RBs to receive a second DL transmission from the BS in the time interval, and the UE alters one or more parameters of a receiver, based on the second set of RBs, when receiving the second DL transmission on the second set of RBs. Altering the one or more parameters may include switching a phase-locked loop (PLL) of the receiver to a center frequency determined based on the second set of RBs.
Abstract:
Systems, methods, apparatuses, and computer-program products for performing dynamic bandwidth switching between control signals and data signals of differing bandwidths are disclosed. A mobile device receives a control signal having a first bandwidth. The mobile device receives a data signal having a second bandwidth different from the first bandwidth. The control signal and the data signal are received over a single carrier frequency. The data signal is transmitted after the control signal such that the data signal and control signal are separated by a time interval. The time interval is based on a switching latency of the mobile device.