Abstract:
Disclosed are techniques for transmitting bundles of silence indicator (SID) frames during a voice call among a plurality of access terminals. In an aspect, a source access terminal detects a transition to a silence state, generates, in response to detection of the transition, at least a first bundle of SID frames, wherein each SID frame of the at least the first bundle of SID frames includes data representing comfort noise to be played at one or more target access terminals of the plurality of access terminals during the silence state, and transmits the at least the first bundle of SID frames to a base station serving the source access terminal. In an aspect, the base station receives the at least the first bundle of SID frames, and periodically forwards SID frames of the at least the first bundle of SID frames to the one or more target access terminals.
Abstract:
A method and apparatus for receiving a notification of missing packets include receiving a set of data packets transmitted by a device and having a corresponding set of sequence numbers, identifying one or more data packets having corresponding sequence numbers that fall within the set of sequence numbers and are yet to be received, receiving an indication from the device that the one or more data packets will not be transmitted by the device, and processing the set of data packets without the one or more data packets in response to receiving the indication.
Abstract:
In some examples, the method and apparatus may comprise dynamically scaling the packet compression procedures based on available system resources. For example, as the available resource capacity (e.g., processing power, bus bandwidth and/or memory) decreases, aspects of the present disclosure may dynamically adjust the usage of the packet compression procedures on one or more data packets to maximize available resources and achieve optimal compression gains.
Abstract:
A method, an apparatus, and a computer program product for wireless communication are provided. The apparatus sends a message including an indication of at least one frequency of interest and at least one alternative frequency of interest. In an aspect, the at least one frequency of interest is used to provide a set of multimedia broadcast multicast service (MBMS) services and the at least one alternative frequency of interest is used to provide a subset of MBMS services of the set of MBMS services. The apparatus receives, for each MBMS service in the set of MBMS services, said each MBMS service using one of the at least one frequency of interest or the at least one alternative frequency of interest based on the message.
Abstract:
Certain aspects of the present disclosure provide methods and apparatus for implementing extended signaling in wireless communications. An example method generally includes communicating with a second apparatus using one or more communications channels defined by a radio access technology (RAT) standard, and communicating with the second apparatus via extended signaling not defined by the RAT standard.
Abstract:
Various aspects of the present disclosure generally relate to wireless communication. In some aspects, a user equipment (UE) may receive, from a base station, configuration information indicating a wake-up signal (WUS) configuration associated with a discontinuous reception (DRX) cycle, wherein the WU'S configuration indicates one or more WUS occasions. The UE may identify one or more conditions. The UE may refrain from monitoring at least one WUS occasion, from the one or more WUS occasions, based at least in part on the identification of the one or more conditions. The UE may monitor one or more resources during an on duration associated with the DRX cycle. Numerous other aspects are described.
Abstract:
In an aspect of the disclosure, a method, a computer-readable medium, and an apparatus are provided. The apparatus may be a user equipment (UE) or component thereof. The apparatus may be configured to transmit to a base station a first request to transmit data in a buffer. The apparatus may be further configured to transmit to the base station a second request to transmit the data in the buffer in absence of a grant in response to the first transmit request. The apparatus may be further configured to remain awake for at least a portion of a scheduled discontinuous reception (DRX) sleep state following the transmission of the second request.
Abstract:
Various aspects of the present disclosure generally relate to wireless communication. In some aspects, a user equipment (UE) may receive a measurement gap configuration from a base station, wherein the measurement gap configuration includes a tune away period. The UE may determine whether one or more data traffic criteria are satisfied for the tune away period. The UE may disregard the measurement gap configuration based at least in part on the determination of whether the one or more data traffic criteria are satisfied. The UE may remain tuned to the base station during the tune away period based at least in part on the determination of whether the one or more data traffic criteria are satisfied. Numerous other aspects are provided.
Abstract:
Various aspects of the present disclosure generally relate to wireless communication. In some aspects, a user equipment (UE) may monitor packet data convergence protocol (PDCP) counter values associated with PDCP packets. The UE may control a PDCP mode of the UE based at least in part on the monitoring of the PDCP counter values. Numerous other aspects are provided.
Abstract:
Certain aspects of the present disclosure provide techniques for wireless communications, and more particularly, to detecting data inactivity and expediting recovery action. A method that may be performed by a user equipment (UE) includes maintaining at least one inactivity timer to detect when uplink or downlink data transfer between the UE and network has stalled and expediting one or more recovery actions if the inactivity expires due to one or more conditions.