Abstract:
Method, device, and computer program product that may improve communications between a mobile device and an access point device are disclosed. In one embodiment, an access point device includes a transceiver configured to receive signals from a mobile device, a processor coupled to the transceiver, and a memory coupled to the processor, the memory having stored thereon code configured to be executed by the processor, the code instructing the processor to: control a plurality of beacons in the access point device, obtain range measurements using the plurality of beacons in the access point device, and assist calibration of a beacon in the mobile device using the range measurements obtained by the plurality of beacons in the access point device.
Abstract:
Disclosed are devices, systems and methods for combining observations obtained at two different mobile devices attached to a human user for performing a navigation operation. For example, observations of a signal acquired at a first mobile device may be selected for computing a position fix based, at least in part, on a utility indicator associated with the observations.
Abstract:
A method of associating environmental context with wireless access points is disclosed. In some embodiments, a method on a user equipment may comprise determining at least one environmental context associated with a subset of one or more Access Points (APs) visible to the UE at an estimated location of the UE. The at least one environmental context associated with the subset may be determined based on one or more of wireless measurements by the UE, and/or sensor measurements by the UE. Further, at least one AP cluster may be determined by clustering the subset of the one or more APs visible to the UE based on the at least one environmental context and the estimated location. Environmental context for APs may be crowdsourced and stored and provided to a UE as location assistance information to facilitate location determination and other functions.
Abstract:
Disclosed are devices, systems and methods for combining observations obtained at two different mobile devices attached to a human user for performing a navigation operation. For example, observations of a signal acquired at a first mobile device may be selected for computing a position fix based, at least in part, on a utility indicator associated with the observations.
Abstract:
Example methods, apparatuses, or articles of manufacture are disclosed herein that may be utilized, in whole or in part, to facilitate or support one or more operations or techniques for selective downloading of one or more positioning tiles using a cache of transmitter parameters, such as for use in or with a mobile communication device, for example.
Abstract:
Techniques are provided which may be implemented using various methods and/or apparatuses to determine time difference of arrival of signals from two base stations as received at a mobile device, to use the time difference of arrival to determine differential forward link calibration for at least two base stations, and also to determine location using the differential forward link calibration for at least two base stations, determined using the time difference of arrival of signals from at least two base stations as received by a mobile device.
Abstract:
Determining the early arrival path (EAP) based on a channel energy response (CER) can involve the use one or more masks to identify one or more peaks in the CER. Masks can be applied to the CER in an iterative process that can help identify the earliest peak corresponding to the EAP. Alias cancelation may also be implemented.
Abstract:
Disclosed is an apparatus and method for collaborative navigation and operation on two mobile devices. The method may include establishing a wireless connection between a first mobile device and a second mobile device, and generating navigation data by the first mobile device for collaborative navigation based on a location of the first mobile device. The method may also include selecting a first subset of the navigation data for display by the first mobile device, and selecting a second subset of the navigation data for display by the second mobile device. The method may also include transferring the second subset of navigation data to the second mobile device and coordinating the display of the first subset of navigation data on the first mobile device with display of the second subset of navigation data on the second mobile device.
Abstract:
Various techniques are provided that may be implemented at one or more of a plurality of co-located mobile devices. For example, a first mobile device may identify a plurality of signal acquisition tasks, transmit a request indicative of a subset of the plurality of signal acquisition tasks to be performed by a second mobile device, and receive a response to the request.
Abstract:
Various methods, apparatuses and articles of manufacture are provided for use by one or more electronic devices to detect and/or respond to certain changes (anomalies) within a wireless signaling environment. For example, a first electronic device may receive a report of a threshold anomaly detected by a monitoring device deployed at a fixed predetermined position within a coverage area of a network service device, and may initiate an investigation by requesting that a second electronic device attempt to monitor certain transmissions of and/or actively communicate with a network service device. In response to a determination based, at least in part, on the investigation that the threshold anomaly represents a threshold change in status within the wireless signaling environment, the first electronic device may transmit a status report regarding the wireless signaling environment to another electronic device.