Abstract:
Systems and methodologies are described that effectuate establishment of an IPSec tunnel for utilization in a wireless communication environment. IPSec establishment procedures on home base stations can be used to establish IPSec tunnels between home base stations situated on open access sectors of wireless communication environments and packet data interworking function components positioned at the contiguity of secured segments of the wireless communication environments. Moreover, high rate packet data point-to-point protocol challenge-handshake authentication protocols can be directed through the IPSec tunnels to facilitate authentication of access terminals associated with the home base stations in order to facilitate further communications with components dispersed within secure areas of wireless communication environments. Further, international mobile subscriber identities (IMSI) affiliated with access terminals associated with home base stations can be used to identify packet data serving nodes with which to establish communications between home base stations and packet data serving nodes.
Abstract:
Systems, apparatus and methods for facilitating identification and/or acquisition of an access point are provided. Methods can include transmitting or receiving access point information (“API”) indicative of an identification of the access point (“AP”). The API can be provided at the AP through hardwiring or receipt of configuration information input by a user or transmitted to the AP by a network operator through Over-The-Air (“OTA”) signaling. The API can be computer-readable and, in some embodiments, the API can also be human-readable. The API can be transmitted on a paging channel from which user equipment (“UE”) can receive information. The frequency at which the API is transmitted can be fixed, dynamic and/or configurable. Upon receipt of the API, acquisition of the AP is attempted if the AP is determined to be a permitted AP.
Abstract:
Methods, systems, and devices for improved acquisition of wireless communication systems or networks are described. A wireless communication device may be connected to a first network that uses a first radio access technology (RAT). When a failure occurs (e.g., lost connection), the device may attempt to acquire a cell or channel of another network that uses a second RAT. The time consumed for acquiring the channel of the second RAT may be reduced by providing a suitably prioritized list of channels. In some examples, the device may identify a channel for initial access or following a call failure based on prior successful access on that channel, or based on information provided by a server, or both.
Abstract:
Providing for distributed access point management for access to a mobile network is described herein. By way of example, an interface application maintained at a Femto cell base station (BS) can facilitate initial power up and/or acquisition for a Femto user terminal (UT). Upon start-up, a bootstrap process is utilized by the Femto cell to provision the UT with an SDL establishing at least one BS as high priority within a particular geographic area (GEO). Thus, when the Femto UT is within the GEO, the UT is more likely to acquire, camp on and/or handoff to the preferred BS. When outside the GEO, a serving access point can provision the Femto UT OTA with a custom SDL suited to another GEO having a different high priority access point. By implementing access point management at distributed access points, expensive network equipment can be mitigated or avoided.
Abstract translation:这里描述了用于访问移动网络的分布式接入点管理。 作为示例,维持在毫微微小区基站(BS)的接口应用可以有助于对于毫微微用户终端(UT)的初始加电和/或获取。 在启动时,毫微微小区利用自举进程来向UT提供在特定地理区域(GEO)内建立至少一个BS作为高优先级的SDL。 因此,当毫微微UT在GEO内时,UT更有可能获得,驻留和/或切换到首选BS。 在GEO外部,服务接入点可以为Femto UT OTA提供适合具有不同高优先级接入点的另一个GEO的自定义SDL。 通过在分布式接入点实现接入点管理,可以减轻或避免昂贵的网络设备。
Abstract:
Systems and methodologies are described herein that facilitate efficient transfer of quality of service (QoS) context during inter-radio access technology (RAT) handovers. In particular, techniques are described herein for establishing rules for whether a user equipment unit (UE) or an associated network should establish QoS for a mixed-mode application, identifying flow to bearer mappings when translating QoS across an inter-RAT handover, mapping QoS parameters of respective RATs, mitigating QoS depreciation upon multiple handovers, performing one or more actions if QoS is not acceptable in a new RAT, maintaining QoS during tunnel mode, and handling scenarios in which a UE moves between a RAT using network-initiated QoS and a RAT using UE-initiated QoS.
Abstract:
Methods and apparatus for serving multiple subscribers through a software-enabled access point (softAP) are described. One example method generally includes establishing at least one wireless wide area network (WWAN) connection for one or more wireless local area network (WLAN) clients, wherein each WLAN client belongs to one of a plurality of subscriber groups, and monitoring use of each WWAN connection for each subscriber group of the plurality of subscriber groups.
Abstract:
In an aspect, while a mobile device is operating in a RRC_Idle State, an RRC_Suspended State, an RLF State and/or an RLF Recovery Procedure State, the mobile device may transmit a connection establishment message to a base station of a plurality of base stations. In an aspect, the connection establishment message includes information that indicates whether the mobile device has information associated with signals transmitted by one or more base stations of the plurality of base stations. The mobile device may initiate transmission of the information associated with the signals to the base station subsequent to establishing a security context for the connection between the mobile device and the base station.
Abstract:
Certain aspects of the present disclosure relate to methods and apparatus for handing overhead messages in new radio (NR). An exemplary method generally includes receiving a first overhead message of a first type comprising first configuration information for the UE, determining a first priority level of the configuration information in the first overhead message, taking one or more first actions based on the first priority level, attempting to receive a second overhead message of a second type comprising second configuration information for the UE, if the second overhead message is received, determining a second priority level of the second configuration information in the second overhead message, taking one or more second actions based on the second priority level.
Abstract:
Methods, systems, and devices for wireless communication are described. A wireless communications system may establish radio bearers for certain data transmissions between a user equipment (UE) and a base station. A radio bearer may be associated with one or more quality of services (QoS) parameters, such as a bit rate. The base station may indicate to the UE a time window over which to average the bit rate. In some examples, a radio bearer may include multiple data flows. The base station may provide information regarding QoS parameters for each data flow in control signaling, such as a grant.
Abstract:
Certain aspects of the present disclosure generally relate to wireless communications and, more specifically, to enhanced or evolved machine type communication (eMTC) power saving mode (PSM) enhancements for service outage. An example method generally includes receiving, from a modem of the wireless node, a first indication that indicates at least one of: network connectivity or network accessibility at the wireless node; receiving, from an applications processor of the wireless node, a second indication that indicates at least one of: server accessibility or availability of one or more applications; and determining when to enter a PSM based, at least in part, on at least one of: the first or second indications.