Abstract:
An energy management system facilitates the transfer of high frequency energy coupled into an implanted lead at a selected RF frequency or frequency band, to an energy dissipating surface. This is accomplished by conductively coupling the implanted lead to the energy dissipating surface through an energy diversion circuit including one or more passive electronic network components whose impedance characteristics are at least partially tuned to the implanted lead's impedance characteristics.
Abstract:
A discoidal feedthrough capacitor has its active electrode plates disposed within a dielectric body so that an edge of the active electrode plates is exposed at a surface of a through-hole for a conductive lead. The conductive lead is conductively coupled to the exposed edge of the electrode plates without an intervening conductive termination surface. Similarly, a ground electrode plate set of the feedthrough capacitor may have an edge exposed at the outer periphery of the capacitor for conductively coupling the exposed edge of the ground electrode plate to a conductive ferrule without an intervening conductive termination surface.
Abstract:
Active implantable medical devices (AIMDs) are backfilled with a dielectric fluid to increase the volts per mil dielectric breakdown strength between internal circuit elements. In a method for backfilling the AIMD with dielectric fluid, substantially all air and moisture is evacuated from the AIMD housing prior to backfilling the AIMD housing with a dielectric fluid having a dielectric breakdown strength greater than air, nitrogen or helium. The AIMD is constructed to accommodate volumetric expansion or contraction of the dielectric fluid due to changes of pressure or temperature of the dielectric fluid to maintain integrity of the AIMD.
Abstract:
A feedthrough terminal assembly for active implantable medical devices includes a structural wire bond pad for a convenient attachment of wires from either the circuitry inside the implantable medical device or wires external to the device. Direct attachment of wire bond pads to terminal pins enables thermal or ultrasonic bonding of lead wires, while shielding the capacitor or other delicate components from the forces applied to the assembly during attachment of the wires.
Abstract:
An MRI-compatible electronic medical therapy system is provided for temporarily preventing current flow through an implanted lead wire in the presence of an induced radio frequency, magnetic, or static field. One or more normally closed switches are disposed in series between the AIMD and the one or more distal electrodes. The switch may be incorporated in the AIMD, lead wire, or within or adjacent to the electrode. The switch remains closed during normal AIMD-related therapy, but temporarily opens in the presence of an induced radio frequency, magnetic, or static field so as to prevent current flow through the electrode and lead wire. The switches prevent current from circulating that could be induced by a medical therapeutic diagnostic device, which can cause overheating of lead wires, excessive currents or temperatures and tissue damage.
Abstract:
A feedthrough terminal assembly for an active implantable medical device includes a conductive ferrule conductively coupled to a housing of the medical device, a feedthrough capacitor conductively coupled to the ferrule, an inductor closely associated with the capacitor in non-conductive relation, and a conductive terminal pin extending through the capacitor and the inductor. The terminal pin extends through the inductor in non-conductive relation and is conductively coupled to active electrode plates of the capacitor. In one preferred form, the terminal pin is wound about the inductor. Additionally, the inductor may be maintained in close association with the capacitor without forming a direct physical attachment therebetween.
Abstract:
A process for manufacturing an EMI filter feedthrough terminal assembly is provided for mating a feedthrough filter capacitor with an hermetic terminal assembly including a ferrule and one or more lead wires which extend through the ferrule in non-conductive relation. The process includes the steps of placing the hermetic terminal assembly, having a capture flange, into a holding fixture, and forming a seat of non-conductive thermal-setting material onto the terminal assembly within the capture flange. A feedthrough filter capacitor is loaded into the capture flange on top of the seat, and then the seat is cured. A conductive thermal-setting material is dispensed between an outer diameter of the feedthrough filter capacitor and the capture flange. The assembly is then centrifuged to pack the conductive thermal-setting material. The conductive thermal-setting material is then cured between the outer diameter of the feedthrough filter capacitor and the capture flange. Preferably, the height of the capture flange is one-quarter to three-quarters of an axial thickness of the capacitor.
Abstract:
A feedthrough filter capacitor assembly for use in active implantable medical devices and a related process for manufacturing a monolithic ceramic capacitor utilizing dielectric materials having a dielectric constant greater than 7000, and preferably in the range of 8500 to 22,000. In the manufacture of the monolithic ceramic capacitor, one or more Curie point shifters and/or other dopants are added to the dielectric material to optimize the dielectric constant at the human body temperature of 37° C. For manufacturing purposes, dopants may be added to the dielectric material to broaden the Curie point peak or point of maximum dielectric constant thereof. The effect is that when such capacitors and terminal assemblies are utilized in a high-voltage defibrillator circuit of an implantable medical device, the dielectric material is optimized so that during the delivery of high-voltage electrical energy, capacitance value of the capacitor drops substantially.
Abstract:
A chip capacitor is conductively coupled to spaced-apart (i.e., non-conductively coupled) circuit traces of an integrated circuit to provide a four terminal network. The chip capacitor includes a casing of dielectric material having first and second sets of electrode plates disposed therein, a first conductive lead frame which is conductively coupled to the first set of electrode plates, and a second conductive lead frame which is conductively coupled to the second set of electrode plates. The first and second lead frames are, in turn, conductively coupled to the circuit traces so as to route the output (or input) current of an electronic device through the capacitor.
Abstract:
An integrated electromagnetic interference (EMI) filter capacitor and DC blocking capacitor is provided in a single monolithic casing of ceramic dielectric material. First and second sets of electrode plates are disposed within the monolithic casing to form the DC blocking capacitor, and ground electrode plates are disposed between selected portions of the first and second sets of electrode plates to form the EMI filter. In several of the embodiments, the first and second sets of electrode plates form a plurality of distinct DC blocking capacitors. The ground electrode plates cooperatively form, with the first and second sets of electrode plates, EMI filters for each of the distinct DC blocking capacitors. Discontinuous lead wires may be provided which extend at least partially into the casing, wherein a first segment of the lead wire is conductively coupled to the first set of electrode plates, and a second set of the lead wire is conductively coupled to the second set of electrode plates. Grounded shields also may be co-planarly disposed between adjacent components of the first and second sets of electrode plates to reduce cross-talk therebetween.