Abstract:
The present disclosure discloses a shifting control method for a hybrid vehicle. The shifting control method includes: detecting operating parameters of the hybrid vehicle, where the operating parameters of the hybrid vehicle includes vehicle speed, vehicle acceleration as reflected from an accelerator-pedal signal and a current gear of the hybrid vehicle; determining a work mode of the hybrid vehicle; performing speed adjustment and shifting control to the first motor-generator according to a work mode and the operating parameters of the hybrid vehicle to implement shifting control of the hybrid vehicle, where the work mode includes an electric-vehicle mode and a hybrid-electric-vehicle mode. The method considers performing speed adjustment and shifting control under various working conditions. This improves smoothness and comfort of the vehicle and enlarges the use scope. The present disclosure further discloses a power transmission system of a hybrid vehicle and a hybrid vehicle.
Abstract:
A transmission unit includes: input shafts, each of the input shafts being provided with a shift driving gear thereon; output shafts, each of the output shafts being provided with a shift driven gear configured to mesh with a corresponding shift driving; a motor power shaft configured to rotate together with one of the output shafts; and an output unit configured to rotate with one of the output shafts at different speeds and configured to selectively engage with one of the output shafts so as to rotate together with one of the output shafts. A power transmission system including the transmission unit and a vehicle including the power transmission system are also provided.
Abstract:
The present disclosure discloses a cruise control method for a vehicle. The vehicle includes an engine unit, a transmission unit, a first motor generator, an output unit, a power switching device, a second motor generator, and a power battery. The cruise control method includes the following steps: when a signal for a vehicle to enter cruise control is detected, determining whether the vehicle meets a preset cruise control condition; and if the vehicle meets the preset cruise control condition, controlling the vehicle according to a current operating mode of the vehicle to enter a corresponding cruise mode, where when the current operating mode of the vehicle is an EV mode, the vehicle is controlled to enter an EV cruise mode, and when the current operating mode of the vehicle is an HEV mode, the vehicle is controlled to enter an HEV cruise mode. The present disclosure further discloses a vehicle.
Abstract:
The present disclosure provides a drive control method, a drive control device of a hybrid electric vehicle and a hybrid electric vehicle. The drive control method includes: obtaining a current gear position of the hybrid electric vehicle, a current electric charge level of a power battery and a slope of a road on which the hybrid electric vehicle is driving; obtaining a current speed of the hybrid electric vehicle if the current gear position of the hybrid vehicle, the current electric charge level of the power battery, and the slope of the road on which the hybrid electric vehicle is driving meet a preset requirement; and causing the hybrid electric vehicle to enter a small load stop mode if the current speed is greater than or equal to a first speed threshold, and less than a second speed threshold.
Abstract:
A method for controlling a synchronizer of a vehicle is provided. The vehicle comprises an engine unit, a transmission unit configured to selectively couple with the engine unit and to couple with at least one of a plurality of wheels of the vehicle, a synchronizer configured to adjust a power transmission between the transmission unit and the wheels. The method comprises acquiring an operation mode and operation parameters of the vehicle and controlling the synchronizer to adjust the power transmission between the transmission unit and the wheels based on the operation parameters. A vehicle including a controller configured to control the synchronizer according to the method is also provided. The vehicle further includes a first motor generator configured to adjust a rotating speed of the synchronizer according to a speed of the vehicle, and a second motor generator configured to drive at least one of wheels of the vehicle.
Abstract:
The present disclosure provides a hybrid electric vehicle, a drive control method and a drive control device of a hybrid electric vehicle. The drive control method includes: obtaining a current gear position and a current operating mode of the hybrid electric vehicle, a current electric charge level of a power battery and a slope of a road on which the hybrid electric vehicle is driving; determining whether the hybrid electric vehicle is within a taxiing start-stop interval according to the current gear position of the hybrid electric vehicle, the current electric charge level of the power battery, and the slope of the road; if the hybrid electric vehicle is within the taxiing start-stop interval, obtaining a current speed of the hybrid electric vehicle; and causing the hybrid electric vehicle to enter a small load stop mode or a small load stall mode according to the current speed.
Abstract:
A transmission unit includes: input shafts; output shafts configured to transmit with a corresponding input shaft via gears; a reverse output gear fitted over one output shaft; a reverse synchronizer; a reverse shaft configured to rotate together with a input shaft and a reverse output gear; a motor power shaft; a first and a second motor gears fitted over the motor power shaft; the second motor gear configured to rotate together with a shift driven gear; and a motor synchronizer. A power transmission system including the transmission unit and a vehicle including the power transmission system are also provided.
Abstract:
The present disclosure provides a hybrid electric vehicle, a drive control method and a drive control device of a hybrid electric vehicle. The drive control method includes: obtaining a current gear position and a current operating mode of the hybrid electric vehicle, a current electric charge level of a power battery and a slope of a road where the hybrid electric vehicle is; determining whether the hybrid electric vehicle is within a taxiing start-stop interval according to the current gear position of the hybrid electric vehicle, the current electric charge level of the power battery, and the slope of the road; if the hybrid electric vehicle is within the taxiing start-stop interval, further obtaining a current speed of the hybrid electric vehicle; and causing the hybrid electric vehicle to enter a small load stop mode or a small load stall mode according to the current speed.
Abstract:
A power transmission system for a vehicle and a vehicle including the same are provided. The power transmission system includes an engine unit configured to generate power, input shafts to receive power from the engine unit, an output shaft configured to transfer the power from the input shafts, linked gears rotatable differentially relative to the output shaft and configured to mesh with driving gears on the input shafts, an output unit fixed on the output shaft and configured to transmit the power to the front wheels of the vehicle, a synchronizer disposed on the output shaft and configured to selectively engage with the linked gears, a first motor configurable to perform either direct or indirect power transmission with at least one of the input shafts and the output shaft, and one or more second motor generators configured to drive the rear wheels of the vehicle.
Abstract:
A power transmission system for a vehicle includes: an engine; a plurality of input shafts, wherein at least one of the input shafts is configured to selectively engage with the engine; a plurality of output shafts configured to mesh with a corresponding shift driving gear; a transmission gear provided on one of the output shafts; a motor power shaft; a first and a second motor gears fitted over the motor power shaft; a motor synchronizer; a reverse gear fitted over the motor power shaft; a middle idler configured to mesh with the shift driving gear provided on one of the input shafts; a reverse idler gear configured to mesh with the reverse gear and to selectively rotate together with the middle idler; and a first motor generator configured to operate correspondingly with the motor power shaft. A vehicle including the power transmission system is also provided.