Abstract:
An encapsulated initiator particle includes one or more polymerization initiators encapsulated by a cured composition. The cured composition includes one or more 1,1-disubstituted alkene compounds. Polymerizable systems can include one or more encapsulated initiator particles and a polymerizable composition. The polymerizable composition can include one or more 1,1-disubstituted alkene compounds. Methods for forming an encapsulated initiator particle are also described herein.
Abstract:
The present teachings show that it is possible to polymerize 1,1-disubstituted alkene compounds in an emulsion (for example using a water based carrier liquid), despite the possible reactions between the monomer and water. Polymerization of 1,1-disubstituted alkene compounds in an emulsion provides opportunities to better control the polymerization compared with bulk polymerization. The emulsion polymerization techniques can be employed for preparing homopolymers, copolymers (e.g., random copolymers), and block copolymers.
Abstract:
The present teachings show that it is possible to polymerize 1,1-disubstituted alkene compounds in a solution (for example using one or more solvents). Polymerization of 1,1-disubstituted alkene compounds in an solution provides opportunities to better control the polymerization compared with bulk polymerization. The solution polymerization techniques can be employed for preparing homopolymers, copolymers (e.g., random copolymers), and block copolymers.
Abstract:
The present teachings show that it is possible to polymerize 1,1-disubstituted alkene compounds in an emulsion (for example using a water based carrier liquid), despite the possible reactions between the monomer and water. Polymerization of 1,1-disubstituted alkene compounds in an emulsion provides opportunities to better control the polymerization compared with bulk polymerization. The emulsion polymerization techniques can be employed for preparing homopolymers, copolymers (e.g., random copolymers), and block copolymers.