摘要:
Prismatic polymer monolithic capacitor structure that includes multiple interleaving radiation-cured polymer dielectric layers and metal layers. Method for fabrication of same. The chemical composition of polymer dielectric and the electrode resistivity parameters are chosen to maximize the capacitor self-healing properties and energy density, and to assure the stability of the capacitance and dissipation factor over the operating temperature range. The termination electrode that extends beyond the active capacitor area and beyond the polymer dielectric layers has a thickness larger than that used industrially to provide resistance to thermomechanical stress. The glass transition temperature of the polymer dielectric is specifically chosen to avoid mechanical relaxation from occurring in the operating temperature range, which prevents high moisture permeation (otherwise increasing a dissipation factor and electrode corrosion) into the structure. The geometry and shape of the capacitor are appropriately controlled to minimize losses when the capacitor is exposed to pulse and alternating currents.
摘要:
Prismatic polymer monolithic capacitor structure that includes multiple interleaving radiation-cured polymer dielectric layers and metal layers. Method for fabrication of same. The chemical composition of polymer dielectric and the electrode resistivity parameters are chosen to maximize the capacitor self-healing properties and energy density, and to assure the stability of the capacitance and dissipation factor over the operating temperature range. The termination electrode that extends beyond the active capacitor area and beyond the polymer dielectric layers has a thickness larger than that used industrially to provide resistance to thermomechanical stress. The glass transition temperature of the polymer dielectric is specifically chosen to avoid mechanical relaxation from occurring in the operating temperature range, which prevents high moisture permeation (otherwise increasing a dissipation factor and electrode corrosion) into the structure. The geometry and shape of the capacitor are appropriately controlled to minimize losses when the capacitor is exposed to pulse and alternating currents.
摘要:
A liquid crystal device having higher transmittance and lower driving voltage is provided. The liquid crystal device comprises a first substrate having a first conductive layer, a second substrate having a second conductive layer, a first alignment layer and a liquid crystal layer. The first alignment layer comprises a liquid crystal alignment treatment agent and a methacryloyloxy-containing silane and is disposed on the first conductive layer of the first substrate. The liquid crystal layer comprises a liquid crystal material and a bifunctional-group resin and is disposed on the first alignment layer. The second substrate having a second conductive layer is disposed on the liquid crystal layer.
摘要:
The present invention provides improved methods for the chemical synthesis of methylene malonates using the Knovenagel synthesis reaction. The method of the invention provides for improved methylene malonates by significantly reducing or eliminating the formation of alternative and/or deleterious side products, significantly reducing or eliminating unwanted consumption of methylene malonates, and significantly reducing or eliminating the degradation of methylene malonates. These advantages result in methylene malonates, which upon recovery, are of higher quality, greater purity, improved yield and possess overall improved performance characteristics (e.g., improved cure speed, retention of cure speed, improved shelf-life and/or stability).
摘要:
Water-processable positive-tone photoresists comprising a water-soluble polymer, wherein the polymer contains a heat-labile functional group that renders the polymer insoluble in water or an aqueous base upon heat treatment, and an acid-labile functional group that restores said water or aqueous base solubility to the polymer upon irradiation in the presence of a water-processable photoacid generator, are described. Also described are the methods of making such polymers and photoresists.
摘要:
Various embodiments disclosed relate to pore inducers and porous abrasive forms made using the same. In various embodiments, the present invention provides a method of forming a porous abrasive form including heating an abrasive composition including pore inducers to form the porous abrasive form. During the heating the pore inducers in the porous abrasive form reduce in volume to form induced pores in the porous abrasive form.
摘要:
A resin composition includes (a) at least one 2-methylene-1,3-dicarbonyl compound, (b) an initiator comprising at least one basic substance, and (c) an anionic polymerization inhibitor including at least one borate ester compound.
摘要:
The present teachings show that it is possible to polymerize 1,1-disubstituted alkene compounds in an emulsion (for example using a water based carrier liquid), despite the possible reactions between the monomer and water. Polymerization of 1,1-disubstituted alkene compounds in an emulsion provides opportunities to better control the polymerization compared with bulk polymerization. The emulsion polymerization techniques can be employed for preparing homopolymers, copolymers (e.g., random copolymers), and block copolymers.
摘要:
An object of the present invention is to provide a radically curable compound which produces cured products with excellent heat resistance, and in order to achieve the object, the present invention provides a radically curable compound represented by general formula (1) below. (In the formula, R1 and R2 are each independently an alkyl group having 1 to 8 carbon atoms, R3 and R4 are each independently a hydrogen atom or a methyl group, m and n are each independently an integer of 1 to 4, and X is an aromatic hydrocarbon group or an aromatic hydrocarbon group substituted by an alkyl group having 1 to 8 carbon atoms.)
摘要:
The present invention provides improved methods for the chemical synthesis of methylene malonates using the Knovenagel synthesis reaction. The method of the invention provides for improved methylene malonates by significantly reducing or eliminating the formation of alternative and/or deleterious side products, significantly reducing or eliminating unwanted consumption of methylene malonates, and significantly reducing or eliminating the degradation of methylene malonates. These advantages result in methylene malonates, which upon recovery, are of higher quality, greater purity, improved yield and possess overall improved performance characteristics (e.g., improved cure speed, retention of cure speed, improved shelf-life and/or stability).