Abstract:
Provided is a method and apparatus for eye tracking. An eye tracking method includes detecting an eye area corresponding to an eye of a user in a first frame of an image; determining an attribute of the eye area; selecting an eye tracker from a plurality of different eye trackers, the eye tracker corresponding to the determined attribute of the eye area; and tracking the eye of the user in a second frame of the image based on the selected eye tracker, the second frame being subsequent to the first frame.
Abstract:
Provided is an electronic device including a display to output an image, a parallax optical element configured to provide light corresponding to the image to a plurality of viewpoints, an input interface configured to receive an input to calibrate the parallax optical element by a user who observes a pattern image from a reference viewpoint among the plurality of viewpoints, and a processor configured to output the pattern image generated by rendering a calibration pattern toward the reference viewpoint, adjust at least one of a pitch parameter, a slanted angle parameter, and a position offset parameter of the parallax optical element based on the input, and output, by the display, the pattern image adjusted by re-rendering the calibration pattern based on an adjusted parameter.
Abstract:
A method and apparatus for measuring a dynamic crosstalk are provided. The method may include: controlling a driver configured to cause a camera to have a dynamic movement; at either one or both of a left eye position and a right eye position of a user, capturing a stereo pattern image output through a three-dimensional (3D) display, by the camera while the camera is in the dynamic movement; and measuring the dynamic crosstalk occurring by the 3D display based on the stereo pattern image captured by the camera.
Abstract:
Provided are a three-dimensional (3D) rendering method and apparatus that detect eye coordinates of positions of eyes of a user from an image of the user, adjust the eye coordinates to correspond to virtual eye positions that reduce crosstalk caused by refraction of light; and perform 3D rendering of the eyes based on the adjusted eye coordinates.
Abstract:
An image sensor includes a plurality of non-color pixel sensors each configured to sense a non-color signal; and a color pixel sensing region including at least one color pixel sensor configured to sense a color signal, wherein the color pixel sensing region has an area physically greater than an area of each of the non-color pixel sensors.
Abstract:
Provided is an apparatus and method for predicting an eye position of user that may detect eye position coordinates in an image which is recently generated, determine a current prediction velocity of an eye movement based on a velocity of a previous eye movement, and predict the eye position coordinates of the user based on the detected eye position coordinates and the current prediction velocity.
Abstract:
An image processing apparatus is provided. The image processing apparatus determines whether a first charge quantity of charges stored in a first charge storage is greater than or equal to a predetermined saturation level, the first charge storage among a plurality of charge storages configured to store charges generated by a sensor of a depth camera. According to the determination result, when the first charge quantity is greater than or equal to the saturation level, the image processing apparatus may calculate the first charge quantity from at least one second charge quantity of charges stored in at least one second charge storage which is different from the first charge storage among the plurality of charge storages.
Abstract:
A depth noise filtering method and apparatus is provided. The depth noise filtering method may perform spatial filtering or temporal filtering according to depth information. In order to perform spatial filtering, the depth noise filtering method may determine a characteristic of a spatial filter based on depth information. Also, in order to perform temporal filtering, the depth noise filtering method may determine a number of reference frames based on depth information. The depth noise filtering method may adaptively remove depth noise according to depth information and thereby enhance a noise filtering performance.
Abstract:
A method and apparatus for processing a depth image that removes noise of a depth image may include a noise estimating unit to estimate noise of a depth image using an amplitude image, a super-pixel generating unit to generate a planar super-pixel based on depth information of the depth image and the noise estimated, and a noise removing unit to remove noise of the depth image using depth information of the depth image and depth information of the super-pixel.