Abstract:
Disclosed is a method for transmitting control information in a media access control-enhanced packet data unit (MAC-e PDU), including determining a data size of a transport format combination (TFC) selected by a user equipment (UE), including control information into the MAC-e PDU when a size of data and a header for the MAC-e PDU is shorter than the data size of the TFC, padding data of the MAC-e PDU with padding bits if a size of data including a corresponding header is shorter than the data size of the TFC, including the control information into the padding bits if the length of the padding bits is suitable for the transmission of the control information, and sending, by the UE, the MAC-e PDU including the control information to a node B.
Abstract:
A method and apparatus are provided for transmitting and receiving an uplink Sounding Reference Signal (SRS). The method includes receiving index information for a sounding reference signal (SRS); determining an SRS offset and an SRS period, based on the index information; and transmitting the SRS, based on the SRS offset and the SRS period. If the index information includes an integer from 0 to 9, the SRS is transmitted twice in a period of 5 ms. If the index information includes an integer from 10 to 644, the SRS period is selected among 5 ms, 10 ms, 20 ms, 40 ms, 80 ms, 160 ms, and 320 ms.
Abstract:
A method and apparatus are provided for transmitting and receiving an uplink Sounding Reference Signal (SRS). The method includes determining a number of single-carrier frequency division multiple access (SC-FDMA) symbols in an uplink pilot time slot (UpPTS); receiving index information for a sounding reference signal (SRS); determining an SRS offset, based on the index information; and transmitting the SRS, based on the SRS offset. If the index information includes an integer from 0 to 9, if the UpPTS includes two SC-FDMA symbols, a first symbol is indicated by SRS offset 0 and a second symbol is indicated by SRS offset 1, and if UpPTS includes one SC-FDMA symbol, the first symbol is indicated by the SRS offset 1. If the index information includes the integer from 0 to 9, the SRS offset indicated by the index information is based on: IndexOffset 00, 1 10, 2 21, 2 30, 3 41, 3 50, 4 61, 4 72, 3 82, 4 9 3, 4.
Abstract:
A method and apparatus are provided for transmitting and receiving an uplink Sounding Reference Signal (SRS). The method includes receiving index information for an SRS; determining an SRS offset and an SRS period, based on the index information; and transmitting the SRS, based on the SRS offset and the SRS period. If the index information includes an integer from 10 to 644, the SRS period is selected among 5 ms, 10 ms, 20 ms, 40 ms, 80 ms, 160 ms, and 320 ms. If the index information includes an integer from 0 to 9, the SRS is transmitted twice in a period of 5 ms, and the SRS offset indicated by the index information is based on: IndexOffset 00, 1 10, 2 21, 2 30, 3 41, 3 50, 4 61, 4 72, 3 82, 4 93, 4
Abstract:
An apparatus and a method for feeding back data receiving status, applied to a system, are provided. The method includes sequencing, by a User Equipment (UE), downlink subframes for transmitting data with respect to each Component Carrier (CC), generating receiving status feedback information for the first X downlink subframes with respect to each CC according to the result of the sequencing, where X≤M, wherein M is the number of downlink subframes on each CC, and transmitting the receiving status feedback information generated with respect to each CC to a base station. Accordingly, the UE will not misinterpret the receiving status for the downlink subframes due to inconsistencies with the base station between transmitting and receiving feedback. This affects the Hybrid Automatic Repeat Request (HARQ) transmission, saves the uplink overheads occupied by the receiving status feedback information, and increases the uplink coverage area.
Abstract:
An apparatus and method are provided for allocating response channel resources by a Node B in a wireless communication system. The method includes determining a Downlink Assigning Indicator (DAI) value of a first Physical Downlink Control Channel (PDCCH) message scheduling a Secondary cell (Scell), if the Scell is scheduled in a non cross-carrier manner; and transmitting Acknowledgement (ACK)/Negative Acknowledgement (NACK) Resource Indicator (ARI) information in a Transmit Power Control (TPC) field included in the first PDCCH message, if the DAI value is equal to a first value.
Abstract:
The method for establishing a connection by a HNB comprising operations of: the HNB transmitting an “attachment request” message to an operation and maintenance center (OMC); the OMC transmitting an “attachment response” message to the MB; the HNB establishing a connection with an MME indicated by the “attachment response” message. With the method proposed, a UE can switch between HNBs in the same CSG through interface X2. Meanwhile, such information as the radio resource management and so on can be exchanged between two HNBs.
Abstract:
Methods and apparatuses are provided for generating a Reference Signal (RS) in a communication system. At least one Physical Resource Block (PRB) is allocated for a User Equipment (UE). An RS sequence corresponding to an antenna port for the UE is mapped on the at least one PRB for the UE. The RS sequence corresponding to the antenna port for the UE is based on an initial sequence derived by an initialization value based on a Cell IDentifier (ID) and an index of the at least one PRB for the UE. The antenna port includes three RE groups in a PRB pair. One RE group includes two RE pairs. One RE pair includes two consecutive Orthogonal Frequency Division Multiplexing (OFDM) symbols in a time domain and one subcarrier in a frequency domain.
Abstract:
Base Station (BS) and User Equipment (UE) apparatuses for configuring a Random Access CHannel (RACH), and methods thereof, are provided. The method for a BS to configure a RACH includes generating configuration information on RACH resources, transmitting the configuration information on the RACH resources to a UE, receiving a random access preamble multiplexed on a plurality of continuous RACH resources from the UE, extracting the random access preamble multiplexed on the plurality of continuous RACH resources, and detecting the extracted random access preamble. The method for a UE to configure a RACH includes receiving configuration information on RACH resources from a BS, selecting occupied RACH resources among a plurality of continuous RACH resources, generating a random access preamble, multiplexing the generated random access preamble on the selected RACH resources, and transmitting the random access preamble on the selected RACH resources to the BS.
Abstract:
Disclosed is a method for transmitting control information in a media access control-enhanced packet data unit (MAC-e PDU), including determining a data size of a transport format combination (TFC) selected by a user equipment (UE), including control information into the MAC-e PDU when a size of data and a header for the MAC-e PDU is shorter than the data size of the TFC, padding data of the MAC-e PDU with padding bits if a size of data including a corresponding header is shorter than the data size of the TFC, including the control information into the padding bits if the length of the padding bits is suitable for the transmission of the control information, and sending, by the UE, the MAC-e PDU including the control information to a node B.