Abstract:
A method of driving gate lines is used to activate the gate lines by outputting output signals of stages to the gate lines. A first node is boosted up based upon a carry signal or the vertical start signal from a previous stage. A gate signal that is pulled up is outputted through an output terminal of a present stage based upon a first clock signal which is boosted up. An off-voltage is outputted through the output terminal of the present stage in response to an output signal from a next stage or the vertical start signal. The first node is discharged in response to the output signal from the next stage or a carry signal from a last stage. A positive ripple voltage at the first node is removed by providing a negative ripple voltage to the first node.
Abstract:
A method of driving gate lines is used to activate the gate lines by outputting output signals of stages to the gate lines. A first node is boosted up based upon a carry signal or the vertical start signal from a previous stage. A gate signal that is pulled up is outputted through an output terminal of a present stage based upon a first clock signal which is boosted up. An off-voltage is outputted through the output terminal of the present stage in response to an output signal from a next stage or the vertical start signal. The first node is discharged in response to the output signal from the next stage or a carry signal from a last stage. A positive ripple voltage at the first node is removed by providing a negative ripple voltage to the first node.
Abstract:
A panel for a display device includes a display area and a peripheral area. The display area comprises a plurality of pixels each comprising a switching element and gate lines and data lines connected to the pixels. The peripheral area comprises a plurality of gate driving integrated circuit regions, a plurality of data driving integrated circuit regions, a plurality of repair lines disposed along the edge of the panel, connecting pads connected to both ends of the repair lines, a test line connected to at least one connecting pad, and a test pad connected to the test line. A test method for detecting disconnection of the data lines is also provided.
Abstract:
A method of manufacturing a thin film transistor array panel is provided, which includes: forming a gate line on a substrate; depositing a gate insulating layer and a semiconductor layer in sequence on the gate line; depositing a lower conductive film and an upper conductive film on the semiconductor layer; photo-etching the upper conductive film, the lower conductive film, and the semiconductor layer; depositing a passivation layer; photo-etching the passivation layer to expose first and second portions of the upper conductive film; removing the first and the second portions of the upper conductive film to expose first and second portions of the lower conductive film; forming a pixel electrode and a pair of redundant electrodes on the first and the second portions of the lower conductive film, respectively, the redundant electrodes exposing a part of the second portion of the lower conductive film; removing the exposed part of the second portion of the lower conductive film to expose a portion of the semiconductor layer; and forming a columnar spacer on the exposed portion of the semiconductor layer.
Abstract:
An LCD device includes first and second gate drivers coupled on a side of an LCD panel displaying an image, a data driver coupled to the LCD panel adjacent to the second gate driver, a timing controller generating a gate start pulse applied to the first gate driver and control signals applied to the data driver, and at least one gate start pulse supply line supplying the gate start pulse to the first gate driver, a manufacturing method thereof and a driving method thereof.
Abstract:
A panel for a display device includes a display area and a peripheral area. The display area comprises a plurality of pixels each comprising a switching element and gate lines and data lines connected to the pixels. The peripheral area comprises a plurality of gate driving integrated circuit regions, a plurality of data driving integrated circuit regions, a plurality of repair lines disposed along the edge of the panel, connecting pads connected to both ends of the repair lines, a test line connected to at least one connecting pad, and a test pad connected to the test line. A test method for detecting disconnection of the data lines is also provided.
Abstract:
The present description relates to an olefin block copolymer having excellences in elasticity and heat resistance and its preparation method. The olefin block copolymer includes a plurality of blocks or segments, each of which includes an ethylene or propylene repeating unit and an α-olefin repeating unit at different weight fractions. The olefin block copolymer has a density of 0.85 to 0.92 g/cm3, and density X (g/cm3) and TMA (Thermal Mechanical Analysis) value Y (° C.) satisfy a defined relationship.
Abstract translation:本发明涉及具有优异的弹性和耐热性的烯烃嵌段共聚物及其制备方法。 烯烃嵌段共聚物包括多个嵌段或链段,其各自包括不同重量分数的乙烯或丙烯重复单元和α-烯烃重复单元。 烯烃嵌段共聚物的密度为0.85〜0.92g / cm 3,密度X(g / cm 3)和TMA(热机械分析)值Y(℃)满足规定的关系。
Abstract:
The present description relates to an olefin block copolymer having excellences in elasticity, heat resistance, and processability. The olefin block copolymer includes a plurality of blocks or segments, each of which includes an ethylene or propylene repeating unit and an α-olefin repeating unit at different weight fractions. In the olefin block copolymer, a first derivative of the number Y of short-chain branches (SCBs) per 1,000 carbon atoms of each polymer chain contained in the block copolymer with respect to the molecular weight X of the polymer chains is a negative or positive number of −1.5×10−4 or greater; and the first derivative is from −1.0×10−4 to 1.0×10−4 in the region corresponding to the median of the molecular weight X or above.
Abstract:
The present invention relates to a catalyst composition and a process for preparing an olefin polymer using the same. More specifically, the present invention relates to a novel catalyst composition comprising at least two types of catalysts and a process for preparing an olefin polymer having excellent heat resistance using the same. The present invention can provide an olefin polymer having excellent activity and high heat resistance, and also can control the values of density, heat resistance and melt index (MI) of the olefin polymer.
Abstract:
A device and corresponding method of fabrication thereof are disclosed, where the device provides a contact for semiconductor and display devices, the device including a substrate, a first wiring line assembly formed on the substrate, an under-layer formed on the first wiring line assembly, an organic insulating layer formed on the under-layer such that the organic insulating layer covers the under-layer, a pattern on the organic insulating layer for contact holes to expose the under-layer, etched contact holes formed in the under-layer in correspondence with the pattern such that the underlying first wiring line assembly is exposed to the outside, a cured organic insulating layer formed on the under-layer, and a second wiring line assembly formed on the organic insulating layer such that the second wiring line assembly is connected to the first wiring line assembly through the etched contact holes, and the corresponding method of fabrication including forming a first wiring line assembly on a substrate, forming an under-layer on the first wiring line assembly, forming an organic insulating layer such that the organic insulating layer covers the under-layer patterning the organic insulating layer to thereby form contact holes exposing the under-layer, etching the under-layer exposed through the contact holes such that the underlying first wiring line assembly is exposed to the outside, curing the organic insulating layer, and forming a second wiring line assembly on the organic insulating layer such that the second wiring line assembly is connected to the first wiring line assembly through the contact holes.