Abstract:
A control method of a secondary battery in which malfunction is less likely to occur and abnormality detection can be performed with high accuracy is provided. A charge state estimation device of a secondary battery including a device which generates electromagnetic noise, a first detection means which measures a voltage value of a secondary battery electrically connected to the device, a second detection means which measures a current value of the secondary battery electrically connected to the device, a correction means which extracts a causal relationship between electromagnetic noise and a driving pattern from data including multiple electromagnetic noise obtained using the first detection means or the second detection means, and an arithmetic means which calculates a charge rate using a regression model based on data after data correction.
Abstract:
A highly visible display device is provided. The display device includes a transistor, a first conductive layer, a second conductive layer, and a third conductive layer. The channel width of the transistor is greater than or equal to 30 μm and less than or equal to 1000 μm. The transistor includes 2 to 50 semiconductor layers, each of which includes a first region, a second region, and a channel formation region. The channel formation region has a region overlapping overlaps with the first conductive layer. The first region overlaps with the second conductive layer and does not overlap with the first conductive layer. The second region overlaps with the third conductive layer and does not overlap with the first conductive layer. The third conductive layer has a function of transmitting visible light, and the second region and the third conductive layer in a stacked state have a function of transmitting visible light.
Abstract:
A display apparatus in which a high voltage can be supplied to a display device is provided. The display apparatus includes a data generation circuit, a source driver circuit, and a pixel. The source driver circuit is electrically connected to the pixel through first and second wirings functioning as signal lines. The pixel includes a display device that is a liquid crystal device, a potential of one electrode of the display device can be a potential of the first wiring, and a potential of the other electrode of the display device can be a potential of the second wiring. The image data generation circuit has a function of generating digital image data including first and second data. In the case where image data corresponding to the digital image data is supplied to the pixel, one of the first and second wirings is made to have a potential corresponding to first data, and the other of the first and second wirings is made to have a potential corresponding to the first data. The potential of the first wiring and the potential of the second wiring are interchanged so that frame inversion driving or the like can be performed.
Abstract:
A novel display device or the like in which a transistor connected to a scan line has small gate capacitance is provided. A novel display device or the like in which a scan line has low resistance is provided. A novel display device or the like in which pixels can be arranged with high density is provided. A novel display device or the like that can be manufactured without an increase in cost is provided. In a transistor including a first gate electrode and a second gate electrode, the first gate electrode is formed using a metal material with low resistance and the second gate electrode is formed using a metal oxide material that can reduce oxygen vacancies in an oxide semiconductor layer. The first gate electrode is connected to the scan line, and the second gate electrode is connected to a wiring to which a constant potential is supplied.
Abstract:
An object is to provide a display device with high productivity by reducing the number of masks and the number of steps. Another object is to provide a display device with high yield. A pixel transistor and a driver transistor are formed over a substrate having an insulating surface in the same step. A pixel electrode electrically connected to the pixel transistor is one electrode. The other electrode is supplied with a fixed potential. A region where a pair of electrodes overlap with each other is used as a capacitor. Accordingly, the number of masks and steps are reduced to provide a display device with high productivity.
Abstract:
A novel input/output device which is highly convenient or reliable is provided. A method for driving an input/output device is provided. The present inventors have conceived a structure which includes an input/output circuit supplied with a selection signal, a control signal, a display signal including display data, and a sensing signal and capable of supplying a potential based on the sensing signal, a conversion circuit capable of supplying sensing data based on the sensing signal, a sensing element capable of supplying the sensing signal, and a display element supplied with a current.
Abstract:
A display apparatus or an electronic device with low power consumption is provided. An image processing system capable of reducing the amount of communication data is provided. The image processing system includes a display portion, an input portion, an arithmetic portion, and an image processing portion. The input portion has a function of obtaining positional information on pointing operation by a user. The arithmetic portion has a function of defining a first region and a second region in accordance with the positional information. The image processing portion has a function of executing image processing on a portion of a first image to generate a second image, the portion corresponding to the first region. The display portion has a function of displaying the second image.
Abstract:
A novel display panel that is highly convenient or reliable is provided. The display panel includes a pixel comprising a pixel circuit and a display element, and the display element is electrically connected to the pixel circuit. The pixel circuit is supplied with a selection signal, an image signal, and a pulse width control signal, supplies an output potential, and determines, on the basis of the pulse width control signal, a period during which the output potential is supplied. The pixel circuit includes a first switch and a first transistor. The first switch supplies the image signal on the basis of the selection signal and determines the output potential on the basis of the image signal. The first transistor includes a first and second electrode, and a first gate electrode. The output potential is output from the first electrode, and the first gate electrode is supplied with the image signal.
Abstract:
A novel display panel that is highly convenient or reliable is provided. The display panel includes a pixel comprising a pixel circuit and a display element, and the display element is electrically connected to the pixel circuit. The pixel circuit is supplied with a selection signal, an image signal, and a pulse width control signal, supplies an output potential, and determines, on the basis of the pulse width control signal, a period during which the output potential is supplied. The pixel circuit includes a first switch and a first transistor. The first switch supplies the image signal on the basis of the selection signal and determines the output potential on the basis of the image signal. The first transistor includes a first and second electrode, and a first gate electrode. The output potential is output from the first electrode, and the first gate electrode is supplied with the image signal.
Abstract:
A display device with high resolution is provided. A display device with high display quality is provided. The display device includes a substrate, an insulating layer, a plurality of transistors, and a plurality of light-emitting diodes. The plurality of light-emitting diodes are provided in a matrix over the substrate. Each of the plurality of transistors is electrically connected to at least one of the plurality of light-emitting diodes. The plurality of light-emitting diodes are positioned closer to the substrate than the plurality of transistors are. The plurality of light-emitting diodes emit light toward the substrate. Each of the plurality of transistors includes a metal oxide layer and a gate electrode. The metal oxide layer includes a channel formation region. The top surface of the gate electrode is substantially level with the top surface of the insulating layer.