Abstract:
The present invention provides a touch panel and a touch display device, the touch panel includes: a transparent substrate; a conductive layer disposed on the transparent substrate, where the conductive layer includes a plurality of first conductive patterns and a plurality of second conductive patterns intersecting with the plurality of first conductive patterns, and each of the second conductive patterns is separated into multiple segments by the plurality of first conductive patterns; a color resistance insulating layer disposed on the conductive layer, where the color resistance insulating layer includes a plurality of through-holes; and a metal bridging layer disposed on the color resistance insulating layer, where the multiple segments of the second conductive pattern are connected together by the metal bridging layer via the through-holes. With the technical solutions of the present invention, the color resistor is used as the insulating layer to replace the existing organic film layer, thus avoiding the undesirable risk brought about by the manufacturing process for coating the organic film, simplifying the manufacturing process and reducing the production costs.
Abstract:
A liquid crystal panel, a display device and a scanning method thereof is disclosed. The liquid crystal panel includes a CF substrate, a TFT substrate and a liquid crystal layer sandwiched between the CF substrate and the TFT substrate; the CF substrate includes a transparent substrate and an integrated capacitive-electromagnetic composite touch layer located at the inner side of the transparent substrate to identify touch signals; wherein, the integrated capacitive-electromagnetic composite touch layer includes a capacitive touch structure and an electromagnetic touch structure electrically insulated from each other. According to the embodiments of the present invention, the integrated capacitive-electromagnetic composite touch layer is integrated to the inner of the CF substrate, so that the liquid crystal display including the liquid crystal panel of the embodiments of the present invention has capacitive and electromagnetic touch functions and is relatively thin.
Abstract:
A connection apparatus for electrically conductive pads includes a first substrate and a second substrate arranged in opposition, wherein a plurality of first electrically conductive pads are arranged on the inside of the first substrate, and a plurality of second electrically conductive pads are arranged on the inside of the second substrate. An electrically conductive glue is arranged between the first electrically conductive pads and the second electrically conductive pads, and the first electrically conductive pads each include a first body, the second electrically conductive pads each include a second body, and the first body and/or the second body includes a hollow portion or portions. The electrically conductive pads with a hollow portion(s) allowing light rays to illuminate and solidify the electrically conductive for bonding and interconnecting the upper and lower electrically conductive pads.
Abstract:
A color filter device for in-cell touch panel is disclosed. The device includes a substrate, a black matrix with a plurality of openings that is formed on the substrate, and a plurality of sensing electrodes and a plurality of driving electrodes both formed on the black matrix. The sensing electrodes are independent of the driving electrodes, the black matrix is disconnected between the sensing electrodes and the driving electrodes, and the disconnected portion of the black matrix is blocked by an opaque material.
Abstract:
An array substrate, a display panel, and a fabrication method of the array-substrate are provided. The array substrate comprises a first thin film transistor including a first metal oxide thin film transistor and disposed in a display region, a second thin film transistor including an amorphous silicon thin film transistor and disposed in a peripheral circuit region; and a third thin film transistor including a second metal oxide thin film transistor and disposed in the peripheral circuit region. A first insulating layer is disposed between a first metal oxide semiconductor layer and a first gate electrode, and a second insulating layer is disposed above the first gate electrode, a second gate electrode, and the first metal oxide semiconductor layer. The amorphous silicon semiconductor layer, a first source electrode, a first drain electrode, a second source electrode, a second drain electrode are disposed above the second insulating layer.
Abstract:
The disclosure provides an array substrate and a color filter substrate of a capacitive touch control screen, a touch control display device and a method for driving the touch control display device, so as to achieve the self-capacitive multi-point touch. The array substrate of the capacitive touch control screen includes: a peripheral area and a display area; a plurality of pixel units with pixel electrodes arranged in the display area; a plurality of touch control electrodes; and touch control electrode lead wires connected with a module configured to detect a touch control signal, wherein each of the touch control electrodes is connected respectively with one of the touch control electrode lead wires.
Abstract:
An array substrate, a display panel, a display device and a manufacturing method thereof. The array substrate includes: a substrate; a plurality of thin film transistors spaced apart from each other and disposed in an array on the substrate; a first passivation layer on the plurality of thin film transistors; and a plurality of touch signal lines and a pixel electrode layer on the first passivation layer, where the pixel electrode layer includes a plurality of pixel electrodes spaced apart from each other and disposed in an array, and is disposed in the same layer as the touch signal lines and electrically insulated from the touch signal lines.
Abstract:
A driving method for a touch screen is disclosed. The touch screen includes a display panel, a touch panel, and a control circuit. Each of a plurality of display cycles includes at least two first time sequences and at least two second time sequences. The method includes, during each of the first time sequences, generating a plurality of scanning control signals for a display scanning line driving circuit, and, in response to the scanning control signals, delivering a plurality of scanning signals to different display scanning lines. The method also includes, during each of the second time sequences, generating a plurality of scanning control signals for the touch scanning line driving circuit, and, in response to the scanning control signals for the touch scanning line driving circuit, sequentially delivering scanning signals to all of the touch scanning lines of the touch panel.
Abstract:
A touch panel includes an array of pixels, a scan drive circuit, and a touch detection circuit. The array includes a plurality of sets of scan lines and a plurality of sets of data lines that orthogonally intersect with each other. The plurality of sets of data lines includes a first type of sets and a second type of sets that are disposed apart from each other. The scan drive circuit is electrically connected with the sets of scan lines and provides each set of the scan lines with a first scan drive signal sequentially set by set. The touch detection circuit provides the first type of sets with a touch drive signal and detects a touch sense signal from the second type of sets when each set of scan lines receives the first scan drive signal.
Abstract:
The application discloses an embedded capacitive touch display panel and an embedded capacitive touch display device, including: a first transparent substrate, and a grid-shaped metal conductive layer, formed on the first transparent substrate, including a number of touch electrodes separate from each other with gaps being formed between them, wherein the embedded capacitive touch display panel further includes a color filter layer including at least red color resists, green color resists, and blue color resists, wherein the color resists in the same colors are arranged in respective color resist bars, and the color resist bars include green color resist bars; and the gaps include first gap sections which are parallel to the color resist bars, and which do not overlap with the green color resist bars. Since the green color resists contribute to display brightness far more than the color resists of the other colors, the first gap sections can be arranged so that they do not overlap with the green color resist bars to thereby alleviate the problem of a visible pattern of the touch electrodes so as to improve the display performance of the embedded capacitive touch display panel without degrading a touch effect.