Abstract:
The present invention is embodied in a plasma reactor for processing a workpiece such as a semiconductor wafer having an axis of symmetry, the reactor including a reactor chamber with a ceiling having an upwardly extending annular pocket bounded by a pair of circumferential side walls, a pedestal for supporting the workpiece within the chamber under the ceiling, a processing gas supply inlet into the chamber, an RF plasma power source coupled to the pedestal, and a magnetic field source near the ceiling providing a radially symmetrical magnetic field having a magnetic pole of one type facing said inner circumferential wall and a magnetic pole of the opposite type facing said outer circumferential wall so as to apply a magnetic field generally straight across said annular pocket. The straight magnetic field lines of the radially symmetrical magnetic field are generally confined to the annular pocket, penetrating into the chamber to a very shallow depth, if at all, and the height of the ceiling above the workpiece exceeds the magnetic field penetration depth.
Abstract:
A method for fabricating a light emitting device includes forming a trench in a first surface on first side of a substrate. The trench comprises a first sloped surface not parallel to the first surface, wherein the substrate has a second surface opposite to the first surface of the substrate. The method also includes forming alight emission layer over the first trench surface, but not over the remainder of the first substrate surface, and removing at least a portion of the substrate from the second side of the substrate to expose the light emission layer and allow it to emit light out of the protrusion or protrusions on the second side of the substrate. These protrusions may be elongated pyramids.
Abstract:
A light emitting device includes a conductive substrate having a first substrate surface and comprising a conductive material, a protrusion formed on the conductive substrate, wherein the protrusion is defined in part by a first protrusion surface that is not parallel to the first substrate surface, and light emission layers disposed over the first protrusion surface. The light emission layers can emit light when an electric field is applied across the light emission layers.
Abstract:
A wafer containing a plurality of electro-optical devices, each device being enclosed in chamber that has a translucent cover. An X-Y matrix of pairs of interconnections on the wafer are connected to the circuitry of the electro-optical devices for addressing the electro-optical devices. The pairs of interconnections extend outside of the chambers enclosing the devices to testing areas on the periphery of the wafer. Testing is done by signals applied through the interconnections while simultaneously exposing the devices to light through the translucent covers.
Abstract:
A method for fabricating a light emitting device includes forming a trench in a first surface on a first side of a substrate. The trench comprises a first sloped surface not parallel to the first surface, wherein the substrate has a second side opposite to the first side of the substrate. The method also includes forming light emission layers over the first trench surface and the first surface, wherein the light emission layer is configured to emit light and removing at least a portion of the substrate from the second side of the substrate to form a protrusion on the second side of the substrate to allow the light emission layer to emit light out of the protrusion on the second side of the substrate.
Abstract:
A light emitting device includes a silicon substrate having a (100) upper surface. The (100) upper surface has a recess, the recess being defined in part by (111) surfaces of the silicon substrate. The light emitting device includes a GaN crystal structure over one of the (111) surfaces which has a non-polar plane and a first surface along the non-polar plane. Light emission layers over the first surface have at least one quantum well comprising GaN.
Abstract:
A light emitting device includes a substrate having a first surface and a second surface not parallel to the first surface, and a light emission layer disposed over the second surface to emit light. The light emission layer has a light emission surface which is not parallel to the first surface.
Abstract:
A light emitting device includes a substrate having a first surface and a second surface not parallel to the first surface, and a light emission layer disposed over the second surface to emit light. The light emission layer has a light emission surface which is not parallel to the first surface.
Abstract:
A display system includes a coherent light source that can emit a coherent light beam, an optical component that can direct the coherent light beam to a spatial light modulator, a transport mechanism that can move the optical component to produce a movement in the coherent light beam, and a spatial light modulator having a two-dimensional array of mirrors each configured to selectively reflect the coherent light beam either toward a screen surface or away from the screen surface to form a display pixel on the screen surface. A display image is formed on the display screen by display pixels produced by the mirrors that reflect the coherent light beam toward the screen surface.
Abstract:
A micro mirror device includes a hinge supported upon a substrate. The hinge has a length and a width substantially parallel to an upper surface of the substrate, and has a thickness substantially perpendicular to the upper surface of the substrate. The thickness is larger than the width. A mirror plate is tiltable around the hinge. The hinge can produce an elastic restoring force on the mirror plate when the mirror plate tilts away from an un-tilted position.