Abstract:
A method of forming a fin field effect transistor includes forming a fin and forming a source region on a first end of the fin and a drain region on a second end of the fin. The method further includes forming a dummy gate with a first semi-conducting material in a first pattern over the fin and forming a dielectric layer around the dummy gate. The method also includes removing the first semi-conducting material to leave a trench in the dielectric layer corresponding to the first pattern, thinning a portion of the fin exposed within the trench, and forming a metal gate within the trench.
Abstract:
A method of manufacturing a semiconductor device may include forming a fin structure on an insulator and depositing a gate material over the fin structure. The method may also include forming a sacrificial material over the gate material and planarizing the sacrificial material. An antireflective coating may be deposited on the planarized sacrificial material. A gate structure may then be formed by etching the gate material.
Abstract:
A semiconductor device includes a fin, a source region formed adjacent the fin and having a height greater than that of the fin, and a drain region formed adjacent the a second side of the fin and having a height greater than that of the fin. A metal gate region is formed at a top surface and at least one side surface of the fin. A width of the source and drain region may be greater than that of the fin. The semiconductor device may exhibit a reduced series resistance and an improved transistor drive current.
Abstract:
A method of manufacturing a semiconductor device may include forming a fin structure on an insulator and depositing a gate material over the fin structure. The method may also include depositing an organic anti-reflective coating on the gate material and forming a gate mask on the organic anti-reflective coating. The organic anti-reflective coating around the gate mask may be removed, and the gate material around the gate mask may be removed to define a gate.
Abstract:
A method for forming a metal-oxide semiconductor field-effect transistor (MOSFET) includes patterning a fin area, a source region, and a drain region on a substrate, forming a fin in the fin area, and forming a mask in the fin area. The method further includes etching the mask to expose a channel area of the MOSFET, etching the fin to thin a width of the fin in the channel area, forming a gate over the fin, and forming contacts to the gate, the source region, and the drain region.
Abstract:
A method facilitates the formation of a stacked fin structure for a semiconductor device that includes a substrate. The method includes forming one or more oxide layers on the substrate and forming one or more amorphous silicon layers interspersed with the one or more oxide layers. The method further includes etching the one or more oxide layers and the one or more amorphous silicon layers to form a stacked fin structure and performing a metal-induced crystallization operation to convert the one or more amorphous silicon layers to one or more crystalline silicon layers.
Abstract:
A fin field effect transistor includes a fin, a source region, a drain region, a first gate electrode and a second gate electrode. The fin includes a channel. The source region is formed adjacent a first end of the fin and the drain region is formed adjacent a second end of the fin. The first gate electrode includes a first layer of metal material formed adjacent the fin. The second gate electrode includes a second layer of metal material formed adjacent the first layer. The first layer of metal material has a different work function than the second layer of metal material. The second layer of metal material selectively diffuses into the first layer of metal material via metal interdiffusion.
Abstract:
A FinFet-type semiconductor device includes a fin structure on which a relatively thin amorphous silicon layer and then an undoped polysilicon layer is formed. The semiconductor device may be planarized using a chemical mechanical polishing (CMP) in which the amorphous silicon layer acts as a stop layer to prevent damage to the fin structure.
Abstract:
A method for forming a fin structure on a silicon-on-insulator (SOI) wafer that includes a silicon layer on an insulating layer that is formed over a semiconductor substrate includes etching the silicon layer using a first etch procedure, etching, following the first etch procedure, the silicon layer using a second etch procedure, and etching, following the second etch procedure, the silicon layer using a third etch procedure to form a T-shaped fin structure.
Abstract:
A method and a system to provide daisy chain distribution in data centers are provided. A node identification module identifies three or more data nodes of a plurality of data nodes. The identification of three or more data nodes indicates that the respective data nodes are to receive a copy of a data file. A connection creation module to, using one or more processors, create communication connections between the three or more data nodes. The communication connections form a daisy chain beginning at a seeder data node of the three or more data nodes and ending at a terminal data node of the three or more data nodes.