摘要:
To form a semiconductor component having active regions separated from one another by trenches as isolation structures, a method involves forming a shallow trench in a semiconductor body, thereafter forming a deep trench within the shallow trench in the semiconductor body, and thereafter completely driving dopant atoms into the semiconductor body to form a well region doped with the dopant. The dopant may be previously introduced by implantation into a surface layer, and then the dopant is finally completely driven into the well region by thermally supported diffusion after forming the deep trench. The shallow and deep trenches together form a compound trench with stepped side walls. Two oppositely doped wells may be formed on opposite sides of the compound trench, which thus isolates the two wells from one another. Active regions may be formed in the two wells.
摘要:
A semiconductor arrangement for an integrated circuit is provided that includes a first region in which a number of components are formed, a second region, a buried insulating layer for vertically insulating the first region, an insulating structure, which is formed between the first region and the second region for laterally insulating the first region from the second region. The insulating structure can have a trench structure with a dielectric and a conductor structure with a semiconductor material. Whereby the trench structure borders on the buried insulating layer, and the conductor structure is designed to conductively connect the first region to the second region.
摘要:
A method for producing deep trench structures in an STI structure of a semiconductor substrate is provided, with the following successive process steps: subsequent to a full-area filling of STI recesses introduced into a semiconductor substrate with a first filler material, a first surface of a semiconductor structure is subjected to a CMP process to level the applied filler material and produce the STI structure; the leveled STI structure thus produced is structured; using the structured, leveled STI structure as a hard mask, at least one deep trench is etched in the area of this STI structure to create the deep trench structures.
摘要:
A method of fabricating an electronic device and the resulting electronic device. The method includes forming a gate oxide on an uppermost side of a silicon-on-insulator substrate; forming a first polysilicon layer over the gate oxide; and forming a first silicon dioxide layer over the first polysilicon layer. A first silicon nitride layer is then formed over the first silicon dioxide layer followed by a second silicon dioxide layer. Shallow trenches are etched through all preceding dielectric layers and into the SOI substrate. The etched trenches are filled with another dielectric layer (e.g., silicon dioxide) and planarized. Each of the preceding dielectric layers are removed, leaving an uppermost sidewall area of the dielectric layer exposed for contact with a later-applied polysilicon gate area. Formation of the sidewall area assures a full-field oxide thickness thereby producing a device with a reduced-electric field and a reduced capacitance between gate and drift regions.
摘要:
A method for manufacturing a metal-semiconductor contact in semiconductor Components is disclosed. There is a relatively high risk of contamination in the course of metal depositions in prior-art methods. In the disclosed method, the actual metal-semiconductor or Schottky contact is produced only after the application of a protective layer system, as a result of which it is possible to use any metals, particularly platinum, without the risk of contamination.
摘要:
A semiconductor element such as a DMOS-transistor is fabricated in a semiconductor substrate. Wells of opposite conductivity are formed by implanting and then thermally diffusing respective well dopants into preferably spaced-apart areas in the substrate. At least one trench and active regions are formed in the substrate. The trench may be a shallow drift zone trench of a DMOS-transistor, and/or a deep isolation trench. The thermal diffusion of the well dopants includes at least one first diffusion step during a first high temperature drive before forming the trench, and at least one second diffusion step during a second high temperature drive after forming the trench. Dividing the thermal diffusion steps before and after the trench formation achieves an advantageous balance between reducing or avoiding lateral overlapping diffusion of neighboring wells and reducing or avoiding thermally induced defects along the trench boundaries.
摘要:
A method of fabricating an electronic device and the resulting electronic device. The method includes forming a gate oxide on an uppermost side of a silicon-on-insulator substrate; forming a first polysilicon layer over the gate oxide; and forming a first silicon dioxide layer over the first polysilicon layer. A first silicon nitride layer is then formed over the first silicon dioxide layer followed by a second silicon dioxide layer. Shallow trenches are etched through all preceding dielectric layers and into the SOI substrate. The etched trenches are filled with another dielectric layer (e.g., silicon dioxide) and planarized. Each of the preceding dielectric layers are removed, leaving an uppermost sidewall area of the dielectric layer exposed for contact with a later-applied polysilicon gate area. Formation of the sidewall area assures a full-field oxide thickness thereby producing a device with a reduced-electric field and a reduced capacitance between gate and drift regions.
摘要:
A DMOS-transistor has a trench bordered by a drift region including two doped wall regions and a doped floor region extending along the walls and the floor of the trench. The laterally extending floor region has a dopant concentration gradient in the lateral direction. For example, the floor region includes at least two differently-doped floor portions successively in the lateral direction. This dopant gradient in the floor region is formed by carrying out at least one dopant implantation from above through the trench using at least one mask to expose a first area while covering a second area of the floor region.
摘要:
Vertically insulated active semiconductor regions having different thicknesses in an SOI wafer, which has an insulating layer, is produced. On the wafer, first active semiconductor regions having a first thickness are arranged in a layer of active semiconductor material. The second active semiconductor regions having a relatively smaller thickness are produced by epitaxial growth proceeding from at least one seed opening in a trench structure. The second semiconductor regions are substantially completely dielectrically insulated, laterally and vertically, from the first semiconductor regions by oxide layers. The width of the seed opening can be defined by lithography.
摘要:
By aligning the primary flat of a wafer with a (100) plane rather than a (110) plane, devices can be formed with primary currents flowing along the (100) plane. In this case, the device will intersect the (111) plane at approximately 54.7 degrees. This intersect angle significantly reduces stress propagation/relief along the (111) direction and consequently reduces defects as well as leakage and parasitic currents. The leakage current reduction is a direct consequence of the change in the dislocation length required to short the source-drain junction. By using this technique the leakage current is reduced by up to two orders of magnitude for an N-channel CMOS device.