摘要:
A nonvolatile memory element and associated production methods and memory element arrangements are presented. The nonvolatile memory element has a changeover material and a first and second electrically conductive electrode present at the changeover material. To reduce a forming voltage, a first electrode has a field amplifier structure for amplifying a field strength of an electric field generated by a second electrode in a changeover material. The field amplifier structure is a projection of the electrodes which projects into the changeover material. The memory element arrangement has multiple nonvolatile memory elements which are arranged in matrix form and can be addressed via bit lines arranged in column form and word lines arranged in row form.
摘要:
In a charge-trapping device having an array of memory cells, which are controlled by word lines buried in trenches within a substrate, further trenches are formed parallel to said word lines within said substrate. These subdivide diffusion regions adjacent to the word lines into each a first diffusion region adjacent to a first trench of a first charge-trapping memory cell and a second diffusion region adjacent to a first trench of a second charge-trapping memory cell. The depth of the further trench is sufficient to impede hot charge carrier exchange between neighboring memory cells. For this purpose the further trenches are filled with dielectric material, e.g., an oxide. The depth of the further trenches may be, e.g., half of that of the word line trench, and the width may, e.g., amount to 15-20 nm.
摘要:
An integrated circuit has a high voltage area, a logic area and a memory array for forming a system on a chip that includes linear, logic and memory devices. The memory array has floating gate transistors disposed in a triple well structure with a raised drain bit line 13 substantially vertically aligned with a buried source bit line 14. The memory array separates the columns with deep trenches 46 that may also be formed into charge pump capacitors.
摘要:
The invention relates to a bit line structure having a surface bit line (DLx) and a buried bit line (SLx), the buried bit line (SLx) being formed in a trench with a trench insulation layer (6) and being connected to doping regions (10) with which contact is to be made via a covering connecting layer (12) and a self-aligning terminal layer (13) in an upper partial region of the trench.
摘要:
In a charge-trapping device having an array of memory cells, which are controlled by word lines buried in trenches within a substrate, further trenches are formed parallel to said word lines within said substrate. These subdivide diffusion regions adjacent to the word lines into each a first diffusion region adjacent to a first trench of a first charge-trapping memory cell and a second diffusion region adjacent to a first trench of a second charge-trapping memory cell. The depth of the further trench is sufficient to impede hot charge carrier exchange between neighboring memory cells. For this purpose the further trenches are filled with dielectric material, e.g., an oxide. The depth of the further trenches may be, e.g., half of that of the word line trench, and the width may, e.g., amount to 15-20 nm.
摘要:
A compound and method for sealing or protecting porous materials used in semiconductor fabrication, and in particular for protecting the inner walls of trenches or recesses or vias which are present in such materials. Specifically, compounds and the method of use of the compounds in which polymer compounds comprising functional groups A and B are used to seal surface-exposed pores in porous materials used in chip production.
摘要:
The invention relates to a nonvolatile two-transistor semiconductor memory cell and an associated fabrication method, source and drain regions (2) for a selection transistor (AT) and a memory transistor (ST) being formed in a substrate (1). The memory transistor (ST) has a first insulation layer (3), a charge storage layer (4), a second insulation layer (5) and a memory transistor control layer (6), while the selection transistor (AT) has a first insulation layer (3′) and a selection transistor control layer (4*). By using different materials for the charge storage layer (4) and the selection transistor control layer (4*), it is possible to significantly improve the charge retention properties of the memory cell by adapting the substrate doping with electrical properties remaining the same.
摘要:
A nonvolatile semiconductor memory cell, an associated semiconductor circuit configuration and also a fabrication method, in which, in a substrate, active regions are formed with a first insulating layer situated above them, a charge-storing layer, a second insulating layer and a control layer. In order to realize a particularly small cell area, in a third insulating layer situated thereabove, openings are formed above at least partial regions of source/drain regions, which are each directly contact-connected via the openings by source and drain lines formed on an insulating web.
摘要:
A method for fabricating a memory cell array, in particular an EPROM or EEPROM memory cell array, includes burying insulation zones on a silicon substrate in accordance with an STI (Shallow Trench Isolation) technique, forming word lines on the insulation zones, covering the word lines with a hard mask and side wall oxides and CVD depositing an oxide or nitride laterally onto the hard mask and onto the side wall oxides to define a spacer. Spacer channels are etched into the insulation zones between adjoining word lines. An SAS (Self Aligned Source) resist mask is applied to mask each two adjacent coated word lines on mutually facing sections, including the spacer channel located between these word lines, while each two adjacent masked word lines of masked word line pairs remain unmasked on mutually facing sections. The SAS resist mask is exposed. Those regions of the insulation zones which are not covered by the SAS perforated mask are anisotropic etched, with a bottom of uncovered spacer channels being lowered down at least to a surface of the uncovered silicon substrate. The SAS perforated mask is removed to uncover a resultant structure.
摘要:
The invention relates to a semiconductor component with trench isolation and to an associated fabrication method, a trench isolation (STI, TTI) having a deep isolation trench with a covering insulation layer (10, 11), a side wall insulation layer (6) and an electrically conductive filling layer (7), which is electrically connected to a predetermined doping region (1) of the semiconductor substrate in a bottom region of the trench. The use of a trench contact (DTC), which has a deep contact trench with a side wall insulation layer (6) and an electrically conductive filling layer (7), which is likewise electrically connected to the predetermined doping region (1) of the semiconductor substrate in a bottom region of the contact trench, makes it possible to improve the electrical shielding properties with a reduced area requirement.