Abstract:
A communication device and method can include one or more processors operatively coupled to memory, a sensor and an output device, where the one or more processors to perform operations of discovering neighboring short range communication enabled devices such as Bluetooth LE devices, creating presence lists from the discovered devices, and transferring biometric and personal data at least to or from the communication device or at least to or from one of the discovered devices. Other embodiments are disclosed.
Abstract:
Control devices are provided. A control device includes an input, an output, and a processor. The processor is configured to receive an input signal through the input. The input signal is generated from a user interface on a media device. The processor sends a control signal through the output to a sound reproduction device. The output signal controls audio generated by the sound reproduction device. The input, output, and processor are not included in the media device and are not included in the sound reproduction device.
Abstract:
An earpiece (100) and a method (640) for acoustic management of multiple microphones is provided. The method can include capturing an ambient acoustic signal from an Ambient Sound Microphone (ASM) to produce an electronic ambient signal, capturing in an ear canal an internal sound from an Ear Canal Microphone (ECM) to produce an electronic internal signal, measuring a background noise signal, and mixing the electronic ambient signal with the electronic internal signal in a ratio dependent on the background noise signal to produce a mixed signal. The mixing can adjust an internal gain of the electronic internal signal and an external gain of the electronic ambient signal based on the background noise characteristics. The mixing can account for an acoustic attenuation level and an audio content level of the earpiece.
Abstract:
An earpiece (100) is provided. The earpiece can include an Ambient Sound Microphone (111) configured to capture ambient sound, an Ear Canal Microphone (123) configured to capture internal sound in the ear canal, a memory (208) configured to record at least a portion of the history of the ambient sound and the internal sound, and a processor (121) configured to save a recent portion of the history responsive to an event.
Abstract:
An earpiece (100) is provided. The earpiece can include an Ambient Sound Microphone (111) configured to capture ambient sound, an Ear Canal Microphone (123) configured to capture internal sound in the ear canal, a memory (208) configured to record at least a portion of the history of the ambient sound and the internal sound, and a processor (121) configured to save a recent portion of the history responsive to an event.
Abstract:
An earpiece (100) and a method (640) for acoustic management of multiple microphones is provided. The method can include capturing an ambient acoustic signal from an Ambient Sound Microphone (ASM) to produce an electronic ambient signal, capturing in an ear canal an internal sound from an Ear Canal Microphone (ECM) to produce an electronic internal signal, measuring a background noise signal, and mixing the electronic ambient signal with the electronic internal signal in a ratio dependent on the background noise signal to produce a mixed signal. The mixing can adjust an internal gain of the electronic internal signal and an external gain of the electronic ambient signal based on the background noise characteristics. The mixing can account for an acoustic attenuation level and an audio content level of the earpiece. Other embodiments are provided.
Abstract:
At least one exemplary embodiment is directed to a method and/or a device for voice operated control. The method can include method measuring an ambient sound received from at least one Ambient Sound Microphone, measuring an internal sound received from at least one Ear Canal Microphone, detecting a spoken voice from a wearer of the earpiece based on an analysis of the ambient sound and the internal sound, and controlling at least one voice operation of the earpiece if the presence of spoken voice is detected. The analysis can be a sound pressure level (SPL) difference, a correlation, a coherence, and a spectral difference.
Abstract:
At least one exemplary embodiment so directed to an earpiece (100). The earpiece can include an Ambient Sound Microphone (111) configured to capture ambient sound, an Ear Canal Microphone (123) configured to capture internal sound in the ear canal, a memory (208) configured to record at least a portion of the history of the ambient sound and the internal sound, and a processor (121) configured to save a recent portion of the history responsive to an event.
Abstract:
A method and system of traversing a device through an accommodating conduit to reach a target area within the accommodating conduit can include varying an amount of elasticity of the device or an amount of torsion moment of the device applied to the accommodating conduit or varying both to minimize bending forces as the device traverses the accommodating conduit. The method or system upon reaching the target area within the accommodating conduit, can further include varying the elasticity or the torsion moment of the device or varying both to cause the device to stiffen. Other embodiments are disclosed.
Abstract:
A communication device and method can include one or more processors operatively coupled to memory and an audible output device, where the one or more processors receive a call from a calling party that includes a voice or video message associated, presenting the voice message or video message as an alias of or to a ring tone or interleaved with the ring tone before the call from the calling party is answered or rejected. Other embodiments are disclosed.