Thickness sensor for conductive features

    公开(公告)号:US11631618B2

    公开(公告)日:2023-04-18

    申请号:US17143032

    申请日:2021-01-06

    Abstract: Various embodiments provide a thickness sensor and method for measuring a thickness of discrete conductive features, such as conductive lines and plugs. In one embodiment, the thickness sensor generates an Eddy current in a plurality of discrete conductive features, and measures the generated Eddy current generated in the discrete conductive features. The thickness sensor has a small sensor spot size, and amplifies peaks and valleys of the measured Eddy current. The thickness sensor determines a thickness of the discrete conductive features based on a difference between a minimum amplitude value and a maximum amplitude value of the measured Eddy current.

    Electrode structure to improve RRAM performance

    公开(公告)号:US11183631B2

    公开(公告)日:2021-11-23

    申请号:US16662422

    申请日:2019-10-24

    Abstract: The present disclosure, in some embodiments, relates to a resistive random access memory (RRAM) device. The RRAM device includes a bottom electrode that is disposed over a lower interconnect layer surrounded by a lower inter-level dielectric (ILD) layer. A data storage structure is arranged over the bottom electrode and a multi-layer top electrode is disposed over the data storage structure. The multi-layer top electrode includes conductive top electrode layers separated by an oxygen barrier structure that is configured to mitigate movement of oxygen between the conductive top electrode layers. A sidewall spacer is disposed directly over the bottom electrode and has a sidewall that covers outermost sidewalls of the conductive top electrode layers and the oxygen barrier structure.

    Electrode structure to improve RRAM performance

    公开(公告)号:US10516106B2

    公开(公告)日:2019-12-24

    申请号:US15939832

    申请日:2018-03-29

    Abstract: The present disclosure relates to a resistive random access memory (RRAM) device. In some embodiments, the RRAM device has a bottom electrode disposed over a lower interconnect layer surrounded by an inter-level dielectric (ILD) layer. A dielectric data storage layer having a variable resistance is located above the bottom electrode, and a multi-layer top electrode is disposed over the dielectric data storage layer. The multi-layer top electrode has conductive top electrode layers separated by an oxygen barrier structure configured to mitigate movement of oxygen within the multi-layer top electrode. By including an oxygen barrier structure within the top electrode, the reliability of the RRAM device is improved since oxygen is kept close to the dielectric data storage layer.

    ELECTRODE STRUCTURE TO IMPROVE RRAM PERFORMANCE

    公开(公告)号:US20180375024A1

    公开(公告)日:2018-12-27

    申请号:US15939832

    申请日:2018-03-29

    Abstract: The present disclosure relates to an RRAM device having an electrode with an oxygen barrier structure, which is configured to improve RRAM reliability by mitigating oxygen movement and thereby maintaining oxygen within close proximity of a dielectric data storage layer, and an associated method of formation. In some embodiments, the RRAM device has a bottom electrode disposed over a lower interconnect layer surrounded by a ILD layer. A dielectric data storage layer having a variable resistance is located above the bottom electrode, and a multi-layer top electrode disposed over the dielectric data storage layer. The multi-layer top electrode has conductive top electrode layers separated by an oxygen barrier structure configured to mitigate movement of oxygen within the multi-layer top electrode. By including an oxygen barrier structure within the top electrode, the reliability of the RRAM device is improved since oxygen is kept close to the dielectric data storage layer.

Patent Agency Ranking