Dipole Patterning for CMOS Devices
    34.
    发明申请

    公开(公告)号:US20220375936A1

    公开(公告)日:2022-11-24

    申请号:US17873787

    申请日:2022-07-26

    Abstract: A semiconductor device includes first and second n-type transistors and first and second p-type transistors. The first n-type transistor includes a first channel layer and a first portion of a high-k dielectric layer over the first channel layer. The second n-type transistor includes a second channel layer and a second portion of the high-k dielectric layer over the second channel layer, wherein the second portion includes a higher amount of an n-type dipole material than the first portion. The first p-type transistor includes a third channel layer and a third portion of the high-k dielectric layer over the third channel layer. The second p-type transistor includes a fourth channel layer and a fourth portion of the high-k dielectric layer over the fourth channel layer, wherein the fourth portion includes a higher amount of a p-type dipole material than the third portion.

    Input/output semiconductor devices
    35.
    发明授权

    公开(公告)号:US11205650B2

    公开(公告)日:2021-12-21

    申请号:US16583406

    申请日:2019-09-26

    Abstract: A semiconductor device according to an embodiment includes a first gate-all-around (GAA) transistor and a second GAA transistor. The first GAA transistor includes a first plurality of channel members, a first interfacial layer over the first plurality of channel members, a first hafnium-containing dielectric layer over the first interfacial layer, and a metal gate electrode layer over the first hafnium-containing dielectric layer. The second GAA transistor includes a second plurality of channel members, a second interfacial layer over the second plurality of channel members, a second hafnium-containing dielectric layer over the second interfacial layer, and the metal gate electrode layer over the second hafnium-containing dielectric layer. A first thickness of the first interfacial layer is greater than a second thickness of the second interfacial layer. A third thickness of the first hafnium-containing dielectric layer is smaller than a fourth thickness of the second hafnium-containing dielectric layer.

    Gate Patterning Process for Multi-Gate Devices

    公开(公告)号:US20210336033A1

    公开(公告)日:2021-10-28

    申请号:US16858440

    申请日:2020-04-24

    Abstract: A method includes providing first and second channel layers in a p-type region and an n-type region respectively, forming a gate dielectric layer around the first and second channel layers, and forming a sacrificial layer around the gate dielectric layer. The sacrificial layer merges in space between the first channel layers and between the second channel layers. The method further includes etching the sacrificial layer such that only portions of the sacrificial layer in the space between the first channel layers and between the second channel layers remain, forming a mask covering the p-type region and exposing the n-type region, removing the sacrificial layer from the n-type region, removing the mask, and forming an n-type work function metal layer around the gate dielectric layer in the n-type region and over the gate dielectric layer and the sacrificial layer in the p-type region.

    P-Metal Gate First Gate Replacement Process for Multigate Devices

    公开(公告)号:US20210305408A1

    公开(公告)日:2021-09-30

    申请号:US16834637

    申请日:2020-03-30

    Abstract: Multi-gate devices and methods for fabricating such are disclosed herein. An exemplary method includes forming a gate dielectric layer around first channel layers in a p-type gate region and around second channel layers in an n-type gate region. Sacrificial features are formed between the second channel layers in the n-type gate region. A p-type work function layer is formed over the gate dielectric layer in the p-type gate region and the n-type gate region. After removing the p-type work function layer from the n-type gate region, the sacrificial features are removed from between the second channel layers in the n-type gate region. An n-type work function layer is formed over the gate dielectric layer in the n-type gate region. A metal fill layer is formed over the p-type work function layer in the p-type gate region and the n-type work function layer in the n-type gate region.

Patent Agency Ranking