Abstract:
The methods described herein provide an improved approach for generating monodispersed droplets. Monodispersed droplets may be effectively obtained by using a plurality of particles to trigger the breakup of a jet, which can include, e.g., flowing in a channel of a microfluidic device a first fluid into a second fluid under stable jetting conditions to provide a jet of the first fluid in the second fluid, wherein the first fluid is immiscible with the second fluid; and introducing a plurality of particles into the jet of the first fluid triggering break-up of the jet of the first fluid and encapsulation of the plurality of particles in a plurality of monodispersed droplets of the first fluid in the second fluid.
Abstract:
Microfluidic methods for barcoding nucleic acid target molecules to be analyzed, e.g., via nucleic acid sequencing techniques, are provided. Also provided are microfluidic, droplet-based methods of preparing nucleic acid barcodes for use in various barcoding applications. The methods described herein facilitate high-throughput sequencing of nucleic acid target molecules as well as single cell and single virus genomic, transcriptomic, and/or proteomic analysis/profiling. Systems and devices for practicing the subject methods are also provided.
Abstract:
The disclosed embodiments relate to method, system and apparatus for synthesizing a target polynucleotide within a droplet. In an exemplary embodiment, the disclosure provides a method of synthesizing a target polynucleotide. The method includes the steps of: contacting a polynucleotide-containing component from a sample with lysis reagents in a droplet, the lysis reagents comprising an enzyme having protease activity, wherein the droplet is encapsulated with an immiscible carrier fluid; moving the droplet into a collection reservoir; incubating the droplet in the collection reservoir for a first duration and then inactivating the enzyme having protease activity; adding to the droplet a nucleic acid synthesis reagent to form a nucleic acid synthesis droplet in the immiscible carrier fluid to form a nucleic acid droplet; and synthesizing the target polynucleotide within the nucleic acid synthesis droplet.
Abstract:
Methods for the detection of components from biological samples are provided. In certain aspects, the methods may be used to detect and/or quantify specific components in a biological sample, such as tumor cells (e.g., circulating tumor cells). Systems and devices for practicing the subject methods are also provided.
Abstract:
Methods for non-specifically amplifying a nucleic acid template molecule are provided. The methods may be used to amplify nucleic acid template molecule(s) for sequencing, e.g., for sequencing the genomes of uncultivable microbes or sequencing to identify copy number variation in cancer cells. Aspects of the disclosed methods may include non-specifically amplifying a nucleic acid template molecule, including encapsulating in a microdroplet a nucleic acid template molecule obtained from a biological sample, introducing multiple displacement amplification (MDA) reagents and a plurality of MDA primers into the microdroplet, and incubating the microdroplet under conditions effective for the production of MDA amplification products, wherein the incubating is effective to produce MDA amplification products from the nucleic acid template molecule.
Abstract:
Microfluidic methods for barcoding nucleic acid target molecules to be analyzed, e.g., via nucleic acid sequencing techniques, are provided. Also provided are microfluidic, droplet-based methods of preparing nucleic acid barcodes for use in various barcoding applications. The methods described herein facilitate high-throughput sequencing of nucleic acid target molecules as well as single cell and single virus genomic, transcriptomic, and/or proteomic analysis/profiling. Systems and devices for practicing the subject methods are also provided.
Abstract:
Methods for delivering discrete entities including, e.g., cells, media or reagents to substrates are provided. In certain aspects, the methods include manipulating and/or analyzing qualities of the entities or biological components thereof. In some embodiments, the methods may be used to create arrays of microenvironments and/or for two and three-dimensional printing of tissues or structures. Systems and devices for practicing the subject methods are also provided.
Abstract:
Microfluidic methods for barcoding nucleic acid target molecules to be analyzed, e.g., via nucleic acid sequencing techniques, are provided. Also provided are microfluidic, droplet-based methods of preparing nucleic acid barcodes for use in various barcoding applications. The methods described herein facilitate high-throughput sequencing of nucleic acid target molecules as well as single cell and single virus genomic, transcriptomic, and/or proteomic analysis/profiling. Systems and devices for practicing the subject methods are also provided.