Abstract:
The present invention provides a manufacturing method of a semiconductor device, at least containing the following steps: first, a substrate is provided, wherein a first dielectric layer is formed on the substrate, at least one metal gate is formed in the first dielectric layer and at least one source drain region (S/D region) is disposed on two sides of the metal gate, at least one first trench is then formed in the first dielectric layer, exposing parts of the S/D region. The manufacturing method for forming the first trench further includes performing a first photolithography process through a first photomask and performing a second photolithography process through a second photomask, and at least one second trench is formed in the first dielectric layer, exposing parts of the metal gate, and finally, a conductive layer is filled in each first trench and each second trench.
Abstract:
A static random access memory unit cell layout structure is disclosed, in which a slot contact is disposed on one active area and another one across from the one. A static random access memory unit cell structure and a method of fabricating the same are also disclosed, in which, a slot contact is disposed on drains of a pull-up transistor and a pull-down transistor, and a metal-zero interconnect is disposed on the slot contact and a gate line of another pull-up transistor. Accordingly, there is not an intersection of vertical and horizontal metal-zero interconnects, and there is no place suffering from twice etching. Leakage junction due to stitch recess can be avoided.
Abstract:
A capacitor structure including a semiconductor substrate; a dielectric layer on the semiconductor substrate; a storage node pad in the dielectric layer; a lower electrode including a bottle-shaped bottom portion recessed into the dielectric layer and being in direct contact with the storage node pad; and a lattice layer supporting a topmost part of the lower electrode, wherein the lattice layer is not directly contacting the dielectric layer, but is directly contacting the topmost part of the lower electrode. The bottle-shaped bottom portion extends to a sidewall of the storage node pad. The bottle-shaped bottom portion has a width that is wider than other portion of the lower electrode.
Abstract:
A method for fabricating a semiconductor structure on a semiconductor wafer is disclosed. A semiconductor wafer having a first region, a second region, and a wafer bevel region is provided. The wafer bevel region has a silicon surface. A first semiconductor structure is formed in the first region and a second semiconductor structure is formed in the second region. The semiconductor wafer is subjected to a bevel plasma treatment to form a blocking layer only in the wafer bevel region. A silicidation process is then performed to form a silicide layer only in the first region and the second region.
Abstract:
A semiconductor memory device includes a substrate, plural gates, plural cell plugs, a capacitor structure and a stacked structure. The gates are disposed in the substrate, and the cell plugs are disposed on the substrate, to electrically connect the substrate at two sides of each gate. The capacitor structure includes plural capacitors, and each capacitor is electrically connected each cell plug. The stacked structure covers the capacitor structure, and the stacked structure includes a semiconductor layer, a conductive layer on the semiconductor layer and an insulating layer stacked on the conductive layer. Two gaps are defined respectively between a side portion of the insulating layer and a lateral portion of the conductive layer at two sides of the capacitor structure, and the two gaps have different lengths.
Abstract:
A patterning method is disclosed. A hard mask layer, a lower pattern transfer layer, an upper pattern transfer layer are formed on a target layer. A first SARP process is performed to pattern the upper pattern transfer layer into an upper pattern mask. A second SARP process is performed to pattern the lower pattern transfer layer into a lower pattern mask. The upper pattern mask and the lower pattern mask define hole patterns. The hole patterns is filled with a dielectric layer. The dielectric layer and the upper pattern mask are etched back until the lower pattern mask is exposed. The lower pattern mask is removed, thereby forming island patterns. Using the island patterns as an etching hard mask, the hard mask layer is patterned into hard mask patterns. Using the hard mask patterns as an etching hard mask, the target layer is patterned into target patterns.
Abstract:
A patterning method is disclosed. A substrate having a hard mask layer and a first material layer formed thereon is provided. The first material layer is patterned into first array patterns and first peripheral patterns. The first array patterns are further transferred into first spacer patterns. Subsequently, a planarization layer and a second material layer are successively formed on the substrate. The second material layer is patterned into second array patterns and second peripheral patterns. The second array patterns are further transferred into second spacer patterns. The second spacer patterns partially overlap the first spacer patterns. The second peripheral patterns do not overlap the first peripheral pattern. The first spacer patterns not overlapped by the second spacer patterns are removed to obtain third array patterns. The hard mask layer is then etched using the third array patterns, the second peripheral patterns and the first peripheral patterns as an etching mask.
Abstract:
A method of fabricating a mask includes providing a substrate. A first material layer is disposed on the substrate. Then, the first material layer is partly removed. A second trench is formed between the remaining first material layer. The second trench includes a height. Later, a second material layer is formed to conformally fill in the second trench. The second material layer includes a thickness. The thickness of the second material layer equals the height of the second trench. Finally, part of the second material layer is removed, and the remaining second material layer and the remaining first material layer comprise a second mask.
Abstract:
A method for fabricating a capacitor includes providing a substrate and a first etching stop layer on the substrate; forming a plurality of first spacers on the first etching stop layer; forming an organic layer and a second etching stop layer sequentially on the first spacers, the organic layer covering the first spacers; forming a plurality of second spacers on the second etching stop layer, each second spacer crossing the first spacers; transferring a pattern of the second spacers to the organic layer to form an organic pattern; performing an etching process using the organic pattern and the first spacers as a mask to form an etching stop pattern and remove the second etching stop layer; transferring the etching stop pattern to the substrate to form a plurality of through holes.
Abstract:
A method of fabricating an isolation structure is provided. A first oxide layer and a first, second, and third hard mask layers are formed on a substrate. A patterned third hard mask layer is formed. Second oxide layers are formed on sidewalls of the patterned third hard mask layer and a fourth hard mask layer is formed between the second oxide layers. The second oxide layers and the second hard mask layer are removed using the patterned third hard mask layer and the fourth hard mask layer as a mask, to form a patterned second hard mask layer. The patterned third hard mask layer and the fourth hard mask layer are removed. A portion of the patterned second hard mask layer is removed to form trench patterns. A patterned first hard mask layer and first oxide layer, and trenches located in the substrate are defined. An isolation material is formed.