Abstract:
Transform based distortion cost estimation, which may be used to calculate a rate distortion cost associated with a mode for encoding a macroblock, is described. In one embodiment of the invention, a distortion value for a particular mode is estimated within the transform domain, which allows for the elimination of both inverse transformation and inverse motion functions in this calculation. A spatial domain residual of an encoding mode is estimated by identifying a difference, within the transform domain, between a motion compensated prediction residual of a macroblock and its corresponding reconstructed signal. The estimated spatial domain residual may then be used in distortion matrix computations to estimate a distortion level, within the transform domain, for an encoding mode.
Abstract:
A method having a corresponding apparatus and computer program comprises receiving a mosaic image comprising a plurality of pixels; separating the mosaic image into a plurality of color channels each comprising only the pixels having a corresponding one of a plurality of colors; and processing each color channel of the image data separately, wherein the processing of each of the color channels comprises at least one of compressing the pixels in the color channel, and color processing the pixels in the color channel.
Abstract:
Smart printing/copying techniques for controlling the printing/copying and editing of a document based on document-descriptive and control information embedded in the printed output. These “smart” printing/copying techniques and controls allow a document user to control printing/copying costs by making tradeoffs with respect to quality and speed based on the embedded data. Such costs may be controlled, for example, by initially printing low cost (low quality, high speed) pages for distribution, while giving subsequent recipients of the document the option of making high quality (higher cost, possibly slower) copies of any or all of the pages in the document, if desired. With these features, a user is able to obtain high quality copies from low quality originals. The techniques of the present invention also allow a recipient to edit page content prior to reprinting, without loss of print output quality.
Abstract:
A codec that compresses video data by tiling a digital representation or frame into blocks and encoding the difference between each pixel value in an image block that is not subject to special treatment and the block minimum value using an adaptive dispersed dither. Higher output quality can be obtained by changing the dither matrix from frame to frame. Certain blocks are encoded differently to further conserve bits. Constant blocks, which are blocks in which the difference between the maximum and minimum pixel values in that block is less than a predefined threshold, are encoded differently. Blocks in which all pixels are within a predetermined distance of either the maximum or minimum block value, referred to as binary-like blocks, are encoded using a single bit. The overall coding scheme can be modified even further to accommodate a fixed bit budget for the compressed output. Other features can also be supported including contrast and brightness adjustment and accessing/decoding random blocks.
Abstract:
Disclosed is an error-correction method and apparatus for transmission of block-based coding standard compliant video data, such as H.263, MPEG or JPEG. A picture is divided into slices wherein each slice of the picture is coded into a group of blocks (GOB) in which each macroblock in the GOB is encoded only with reference to other macroblocks in the same GOB. An erasure slice, which is also a GOB, is then formed wherein the data for each macroblock of the erasure slice is determined by summing a corresponding macroblock in each of the GOBs containing slices of the picture. The GOBs containing slices of the picture are then transmitted, along with the GOB containing the erasure slice, as block-based coding standard compliant data packets. The result is that if any one of the GOBs containing slices of the picture is lost, then the lost GOB can be reconstructed from the remaining GOBs and the erasure slice.
Abstract:
System and methods for gamut bounded saturation adaptive color enhancement are provided. Color enhancement incorporating gamut bounded saturation enhances colors of an pixel from a source color gamut such that the resulting color is within a target color gamut. This resulting color may, for example, take advantage of an expanded target color gamut of a display. Gamut bounded saturation may be implemented independently or in combination with RGB bounded saturation.
Abstract:
Devices, systems, methods, and other embodiments associated with configuring devices are described. One example apparatus is configured with an interface logic and a control logic. The interface logic is to detect a remote device. When a remote device is detected, the interface logic transmits an interface to the remote device that converts the remote device to be a remote control device. The remote control device provides selected configuration information for controlling an image device. The control logic is to provide control signals for reconfiguring the image device based, at least in part, on the selected configuration information received from the remote device.
Abstract:
An apparatus and method are described for filtering noise internally within a video encoding framework. In various embodiments of the invention, an in-loop noise filter is integrated within an encoding device or framework that reduces noise along a motion trajectory within a digital video signal. This integration of in-loop noise reduction allows both noise filtering parameters and encoding parameters to be more easily related and adjusted. The in-loop noise filter leverages characteristics of digital video encoding processes to reduce noise on a video signal and improve encoding efficiencies of a codec.
Abstract:
System and methods for gamut bounded saturation adaptive color enhancement are provided. Color enhancement incorporating gamut bounded saturation enhances colors of an pixel from a source color gamut such that the resulting color is within a target color gamut. This resulting color may, for example, take advantage of an expanded target color gamut of a display. Gamut bounded saturation may be implemented independently or in combination with RGB bounded saturation.
Abstract:
A prediction mode for encoding data is selected using a reduced number of rate-distortion cost computations. This reduction in rate-distortion cost computations is caused by filtering the number of potential intra prediction modes based on two criteria. First, the number of potential prediction modes is reduced based on at least one characteristic of a quantization procedure performed during the encoding procedure. Second, the number of potential prediction modes is reduced based on an error value calculated for each of the potential prediction modes.