Abstract:
Smart printing/copying techniques for controlling the printing/copying and editing of a document based on document-descriptive and control information embedded in the printed output. These “smart” printing/copying techniques and controls allow a document user to control printing/copying costs by making tradeoffs with respect to quality and speed based on the embedded data. Such costs may be controlled, for example, by initially printing low cost (low quality, high speed) pages for distribution, while giving subsequent recipients of the document the option of making high quality (higher cost, possibly slower) copies of any or all of the pages in the document, if desired. With these features, a user is able to obtain high quality copies from low quality originals. The techniques of the present invention also allow a recipient to edit page content prior to reprinting, without loss of print output quality.
Abstract:
A codec that compresses video data by tiling a digital representation or frame into blocks and encoding the difference between each pixel value in an image block that is not subject to special treatment and the block minimum value using an adaptive dispersed dither. Higher output quality can be obtained by changing the dither matrix from frame to frame. Certain blocks are encoded differently to further conserve bits. Constant blocks, which are blocks in which the difference between the maximum and minimum pixel values in that block is less than a predefined threshold, are encoded differently. Blocks in which all pixels are within a predetermined distance of either the maximum or minimum block value, referred to as binary-like blocks, are encoded using a single bit. The overall coding scheme can be modified even further to accommodate a fixed bit budget for the compressed output. Other features can also be supported including contrast and brightness adjustment and accessing/decoding random blocks.
Abstract:
Devices, systems, apparatuses, methods, and other embodiments associated with bit resolution enhancement are described. In one embodiment, an apparatus includes logic configured to produce a high-resolution pixel from a low-resolution pixel. The apparatus includes logic configured to classify the high-resolution pixel as being in a smooth region of an image based on at least one of a gradient value and a variance value associated with the low-resolution pixel. The apparatus includes logic configured to selectively re-classify the high-resolution pixel as not being in the smooth region of the image based on a set of neighboring high-resolution pixels associated with high-resolution pixel. The apparatus includes logic configured to selectively filter the high-resolution pixel based on whether the high-resolution pixel remains classified as being in the smooth region of the image.
Abstract:
Techniques described in the disclosure are generally related to enhancing portions of an image relative to other portions of the image. The example techniques may utilize depth information in conjunction with one or more viewer perceivable information to enhance portions of the image relative to other portions. The techniques may then display the enhanced image to provide the viewer with a possibly more realistic image.
Abstract:
To improve contrast ratio of the image on a backlit display plane such as a liquid crystal display (“LCD”), each area of the image that has separately controllable backlight may be given full backlight until an average or composite brightness of the image in that area is less than a threshold value at which light leakage through the image from full-strength backlight begins to be noticable by a viewer. For image areas with composite brightness less than that threshold, backlight brightness may be reduced in proportion to how much below the threshold the area's composite image brightness is. Backlight brightness may also be adjusted for other image aspects such as (1) the presence of bright pixels in an otherwise relatively dark area, (2) whether the area is adjacent to one or more other areas in which the image information is in motion, and/or (3) time-averaging of image information over several successive frames of such information.
Abstract:
A system including a quality estimation module configured to estimate a visual quality of video content based on data from a decoder module. The system further including a settings database configured to store a plurality of predetermined settings. The settings database outputs at least one of the predetermined settings in response to the visual quality. The system further including a video post-processor module configured to automatically adjust settings of the video post-processor module based on the at least one of the predetermined settings. The video content is processed based on the settings of the video post-processor module that were automatically adjusted.
Abstract:
An inter mode for encoding a video macroblock is selected. An initial analysis on the macroblock homogeneity is performed to quickly reduce the number of inter modes for which motion estimation and rate distortion calculation are to be performed. An inter mode is selected based on these calculations and sub-pixel motion estimation, at various sub-pixel interpolation granularities, is performed only on the selected inter mode. Sub-pixel motion estimation may be skipped for macroblocks that exhibit relatively low distortion at the integer pixel level.
Abstract:
A three-dimensional filter that addresses various types of noise is described. This filter uses both spatial and temporal characteristics of the video signal in the filtering process. Additionally, the filter is able to maintain edge fidelity within in images in the video signal.
Abstract:
A method for encoding video data to reduce blocking artifacts is provided. The method initiates with identifying a macro-block as being associated with a blocking artifact. For example the macro-block may be identified as a low activity macro-block or a high activity macro-block. Then, blocking artifacts introduced through a compression operation are mitigated by adjusting both a quantization parameter and an amount of bits generated from the quantization parameter. A video encoder and a system for processing image data associated with block based compression are provided.
Abstract:
An interactive photo system that provides an interesting and entertaining way to link photos from the digital and analog domains. The system enables easy conversion of a paper-based photo into digital form. The conversion process generally involves a user holding up a paper-based photo image in front of a camera of the system, such that the captured image is rendered in a specific location on a display screen. The system adjusts the captured image for orientation and illumination irregularities in creating a digital version of the paper-based photo. The system further includes a database of digital images and a content retrieval engine to which content from the just-converted digital image can be used as a search query to search the database for other similar digital photos.