Abstract:
A method and system for managing a distributed directory service. The method includes defining a plurality of objects operative to maintain information about a plurality of partitions in a MIB, implementing the MIB in an agent, loading the agent on a managed server, interfacing the agent with a directory service, and sending a management request from a management station to the agent to access one of the objects. The MIB maintains information about each partition on the managed server, and allows access to such information through conventional network management software.
Abstract:
A multiple-layered cellular communication system particularly adapted to mobile phones and LAN type communication is provided with an overlaid arrangement of cell transceivers. By having this overlay, multiple service providers can provide a cooperative method of load sharing. The usage of the frequency spectrum can be improved and an advanced hand-off arrangement can be used to prevent or reduce the possibility of blocked calls due to cell saturation.
Abstract:
A urine collecting and analyzing apparatus that mounts on a toilet. The apparatus has a housing that mounts to or is integrated into the rim of the toilet bowl and has an opening for access to the bowl. The housing has a collector compartment and a controller compartment. A collector cup fits under the collector compartment extends over the bowl in a retracted position and in a collecting position. When in the collecting position, the cup captures urine released by a user. The cup is connected to a measurement chamber by a transfer tube. The urine moves through the transfer tube from the cup to the measurement chamber to a predetermined threshold volume and level. A controller in the controller compartment reads sensors and transmits sensor data to a device for storage and display.
Abstract:
An electromagnetic levitation force type propulsion device includes an integrated electromagnet structure, an auxiliary propulsion structure and a power supply control structure. The integrated electromagnet structure includes a mounting frame, a propulsion outputting shaft capable of moving back and forth relative to the mounting frame and extending out of the mounting frame, and two electromagnets opposite to each other. One of the electromagnets is assembled to the mounting frame to form a stationary electromagnet and the other electromagnet is fastened to the propulsion outputting shaft to form a movable electromagnet. The movable electromagnet is provided at the other side of the mounting frame and can move back and forth relative to the stationary electromagnet. The auxiliary propulsion structure drives the movable electromagnet back and forth relative to the stationary electromagnet. The power supply control structure provides a power supply for the integrated electromagnet structure and/or the auxiliary propulsion structure.
Abstract:
Wetting and print transfer from a printing patterned transfer surface is enhanced by applying an ultraviolet radiation responsive material to the patterned transfer surface. Ultraviolet activation of the ultraviolet responsive coating is performed during a transfer of printing material to a substrate. The technique increases precision of the printing process and is useful for transfer of printing material to a substrate in order to establish printed circuit components such as circuit traces and printed circuit elements on the substrate. In a particular configuration the ultraviolet radiation responsive material can be made of azobenzene material or free radical initiators.
Abstract:
A surgical instrument for inserting an implant includes a first shaft having an axial bore and including a distal end configured to actuate a first feature of a spinal implant and a second shaft extending through the axial bore of the first shaft and including a distal end configured to actuate a second feature of the spinal implant. Rotation of the first shaft in a first direction actuates the first feature and causes rotation of the second shaft in a second direction to actuate the second feature.
Abstract:
The present invention provides an apparatus for manufacturing stoichiometric Mg2Ni compound applicable to industry and capable of manufacturing continuously. The apparatus mainly comprises: a vacuum chamber, comprising a material feeding tube; a first crucible, set in the vacuum chamber; a heating device, set on the first crucible; a stirring device, set in the vacuum chamber, and above the first crucible; and a second crucible, set in the vacuum chamber, and on one side of the first crucible. The present invention also discloses a method to manufacture stoichiometric γ-phase Mg2Ni hydrogen storage compound. Through this apparatus and method, the residual waste magnesium-rich liquid in the crucible is poured to another independent crucible, and switch with the position of the crucible originally containing the γ-phase Mg2Ni hydrogen storage compound. Then, new raw materials of magnesium and nickel are added and heated. Repeat the smelt steps described above continuously, and a continuous manufacturing method is introduced. After the original crucible is cooled, the solid substances at the bottom of the crucible can be tapped down without further special treatments. Then stoichiometric γ-phase Mg2Ni hydrogen storage compound with an exactly atomic ratio of 2:1, without other phases, and with excellent hydrogen absorption-desorption dynamics is given.
Abstract:
Wetting and print transfer from a printing patterned transfer surface is enhanced by applying an ultraviolet radiation responsive material to the patterned transfer surface. Ultraviolet activation of the ultraviolet responsive coating is performed during a transfer of printing material to a substrate. The technique increases precision of the printing process and is useful for transfer of printing material to a substrate in order to establish printed circuit components such as circuit traces and printed circuit elements on the substrate. In a particular configuration the ultraviolet radiation responsive material can be made of azobenzene material or free radical initiators.
Abstract:
An atomic-layer-deposition process for forming a patterned thin film comprising providing a substrate, applying a deposition inhibitor material to the substrate, wherein the deposition inhibitor material is an organic compound or polymer; and patterning the deposition inhibitor material either after step (b) or simultaneously with applying the deposition inhibitor material to provide selected areas of the substrate effectively not having the deposition inhibitor material. An inorganic thin film material is substantially deposited only in the selected areas of the substrate not having the deposition inhibitor material.
Abstract:
An atomic-layer-deposition process for forming a patterned thin film comprising providing a substrate, applying a deposition inhibitor material to the substrate, wherein the deposition inhibitor material is an organosiloxane compound; and patterning the deposition inhibitor material either after step (b) or simultaneously with applying the deposition inhibitor material to provide selected areas of the substrate effectively not having the deposition inhibitor material. The thin film is substantially deposited only in the selected areas of the substrate not having the deposition inhibitor material.